Answer:
406.45mL
Explanation:
The following data were obtained from the question:
V1 = 350mL
P1 = 720mmHg
P2 = 630mmHg
V2 =?
The new volume can be obtain as follows:
P1V1 = P2V2
720 x 350 = 620 x v2
Divide both side by 620
V2 = (720 x 350) /620
V2 = 406.45mL
The new volume of the gas is 406.45mL
<em>Same group element have same</em><em><u> Valence electron</u></em><em> and behave similarly in </em><em><u>Chemistry.</u></em>
<u>Explanation:</u>
For example. First group elements Alkali metals:- H, Li, K, Rb, Cs, Fr
Valance electron will take part in forming a bond with other elements and compound will form. All the above-given elements (H-Fr) have valence electron 1 in outer most 'S' shell. All have electronic configuration S1
Behavior: Since valence electrons are the same so the behavior of all the elements in this group is the same. All are metal (from Li-Fr, except Hydrogen), all are very reactive, does not found in native state in the environment, and all react with water.
To start, 1 cubic centimeter = 1 milliliter, so now you have 1.11g/mL.
Now multiply 1.11 by 387 to get the mass of antifreeze in grams, since the mL is canceled out.
387 mL x 1.11g/mL = 429.57 g
Answer:
(a) oxygen
(b) 154g (to 3sf)
(c) 79.9% (to 3sf)
Explanation:
mass (g) = moles × Mr/Ar
note: eqn means chemical equation
(a)
moles of P = 84.1 ÷ 30.973 = 2.7152 moles
moles of O2 = 85÷2(16) = 2.65625 moles
Assuming all the moles of P is used up,
moles of O2 / moles of phosphorus = 5/4 (according to balanced chemical eqn)
moles of O2 required = 5/4 × 2.7152moles = 3.394 moles (more than supplied which is 2.65625moles)
therefore there is insufficient moles of O2 and the limiting reactant is oxygen.
(b)
moles of P2O5 produced
= 2/5 (according to eqn) × 2.7152
= 1.08608moles
mass of P2O5 produced
= 1.08608 × [ 2(30.973) + 5(16) ]
= 154.164g
= approx. 154g to 3 sig. fig.
(c)
% yield = actual/theoretical yield × 100%
= 123/154 × 100%
= 79.870%
= approx. 79.9% (to 3sf)
Answer:
Initial volume of the container (V1) = 1.27 L (Approx)
Explanation:
Given:
Number of mol (n1) = 5.67 x 10⁻²
Number of mol (n2) = (5.67 +2.95) x 10⁻² = 8.62 x 10⁻²
New volume (V2) = 1.93 L
Find:
Initial volume of the container (V1)
Computation:
Using Avogadro's law
V1 / n1 = V2 / n2
V1 / 5.67 x 10⁻² = 1.93 / 8.62 x 10⁻²
V1 = 10.9431 / 8.62
Initial volume of the container (V1) = 1.2695
Initial volume of the container (V1) = 1.27 L (Approx)