Based on Le Chatelier's principle, if the equilibrium of a system is disturbed by changing the temperature, pressure or concentration, then it will shift in a direction to undo the effect of the induced change.
The given equilibrium is:
A + B ↔ AB
Removal of the reactant A implies that the concentration of A has decreased, therefore the equilibrium will shift in a direction to produce more of A. Thus, it will shift to the left and the rate of the reverse or backward reaction will increase.
The answer is number 1 - energy is emitted
Energy is released when an atom in an excited state returns to the ground state.
Answer:
The answer to your question is: 0.028 kg of NO2
Explanation:
Data
3.7 x 10²⁰ molecules of NO2 in kg
MW of NO2 = 14 + (16 x 2) = 14 + 32 = 46 kg
1 mol of NO2 --------------------- 6.023 x 10 ²³ molecules
x --------------------- 3.7 x 10²⁰ molecules
x = 3.7 x 10²⁰ x 1 / 6.023 x 10 ²³
x = 0.00061 mol
1 mol of NO2 --------------------- 46 kg of NO2
0.00061 mol ------------------ x
x = 0.00061 x 46/1
x = 0.028 kg of NO2
Answer:
The equilibrium expression is:
CoC2O4(s)⇌Co2+(aq)+C2O2−4(aq)
For this reaction:
Ksp = [Co2+][C2O2−4]=1.96×10−8
Explanation:
Batteries will not clot if cobalt ions are removed from its cells. Some blood collection tubes contain salts of the oxalate ion,
C2O2−4
, for this purpose. At sufficiently high concentrations, the calcium
and oxalate ions form solid, CoC2O4·H2O (which also contains water bound in the solid). The concentration of Co2+ in a sample of blood serum is 2.2 × 10–3M. What concentration of
C2O2−4
ion must be established before CoC2O4·H2O begins to precipitate.
CoC2O4 does not appear in this expression because it is a solid. Water does not appear because it is the solvent.
Solid CoC2O4 does not begin to form until Q equals Ksp. Because we know Ksp and [Co2+], we can solve for the concentration of
C2O2−4
that is necessary to produce the first trace of solid:
I believe the correct answer is true. Voltaic cells produces current from spontaneous reactions and is also known as galvanic cell. For electrolytic cells the reactions are not spontaneous and requires input of current for the reaction to occur.