Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
"The solubility of gases decreases as temperature rises" statements about trends in solubility is accurate.
<u>Option: D</u>
<u>Explanation:</u>
A substance's solubility is the quantity of that component that is needed at a defined degree of temperature to produce a saturated solution in any set quantity of solvent. Some compounds like hydrochloric acid, ammonia, etc have solubility that reduces with rising temperature. They are both standard-pressure gases.
When heating a solvent with a gas absorbed in it, both the solvent and the solute spike in the kinetic energy.When the gaseous solute's kinetic energy rises, the molecules have a higher propensity to overcome the solvent molecules' connection and migrate to the gas phase. Thus, a gas's solubility reduces with rising temperature.
Answer:
destructive interference?
Explanation:
what is the answer to what there is nothing here
Answer:
cornea, pupil, lens, vitreous humor