Answer:
1 to 696
The expansion ratio of liquefied and cryogenic from the boiling point to ambient is: nitrogen 1 to 696. liquid helium 1 to 757. argon 1 to 847.
Explanation:
Put a thermometer in the water and wait until it boils. When it boils record the temperature and compare it to the normal water boiling point.
The mass of an electron is:
0.00054386734 or 9.1 x <span>10^-31 kg</span><span>.
</span>Good Luck!!
Answer:
Mass released = 8.6 g
Explanation:
Given data:
Initial number of moles nitrogen= 0.950 mol
Initial volume = 25.5 L
Final mass of nitrogen released = ?
Final volume = 17.3 L
Solution:
Formula:
V₁/n₁ = V₂/n₂
25.5 L / 0.950 mol = 17.3 L/n₂
n₂ = 17.3 L× 0.950 mol/25.5 L
n₂ = 16.435 L.mol /25.5 L
n₂ = 0.644 mol
Initial mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.950 mol × 28 g/mol
Mass = 26.6 g
Final mass of nitrogen:
Mass = number of moles × molar mass
Mass = 0.644 mol × 28 g/mol
Mass = 18.0 g
Mass released = initial mass - final mass
Mass released = 26.6 g - 18.0 g
Mass released = 8.6 g
Answer:
the mass of the glycerine needed in the given solution is 23.92 g
Explanation:
Given;
molarity of the solution (C₃H₈O₃), C = 2.60 M
Volume of the solution, V = 100 mL = 100 x 10⁻³ L = 0.1 M
The molarity of a solution is given as follows;

The molecular mass of the given solution;
molecular mass = (12 x 3) + (8 x 1) + (16 x 3)
molecular mass = 92 g/mol
The mass of the glycerine needed in the given solution is calculated as follows;
reacting mass = amount of solute (moles) x molecular mass (g/mol)
reacting mass = 0.26 x 92
reacting mass = 23.92 g
Therefore, the mass of the glycerine needed in the given solution is 23.92 g