C jsnndbdbdbdbx ndndnndnd d dndnxnxnnxnxjxjxjxncncnnxnx
Answer:
Distance from point AA to point BB = 189.3 feet
Step-by-step explanation:
Let the distance from point AA to the base of the lighthouse be represented by x, and the distance from point BB to the base of the lighthouse be represented by y. So that;
distance from point AA to point BB = x - y
To determine the value of x, applying the required trigonometric function;
Tan θ = 
Tan 13 = 
x = 
= 441.81 feet
x = 441.8 feet
To determine the value of y;
Tan 22 = 
y = 
= 252.46
y = 252.5 feet
Thus,
distance from point AA to point BB = 441.8 - 252.5
= 189.3 feet
Answer:
Please read the complete procedure below:
Step-by-step explanation:
You have the following initial value problem:

a) The algebraic equation obtain by using the Laplace transform is:
![L[y']+2L[y]=4L[t]\\\\L[y']=sY(s)-y(0)\ \ \ \ (1)\\\\L[t]=\frac{1}{s^2}\ \ \ \ \ (2)\\\\](https://tex.z-dn.net/?f=L%5By%27%5D%2B2L%5By%5D%3D4L%5Bt%5D%5C%5C%5C%5CL%5By%27%5D%3DsY%28s%29-y%280%29%5C%20%5C%20%5C%20%5C%20%281%29%5C%5C%5C%5CL%5Bt%5D%3D%5Cfrac%7B1%7D%7Bs%5E2%7D%5C%20%5C%20%5C%20%5C%20%5C%20%282%29%5C%5C%5C%5C)
next, you replace (1) and (2):
(this is the algebraic equation)
b)
(this is the solution for Y(s))
c)
![y(t)=L^{-1}Y(s)=L^{-1}[\frac{4}{s^2(s+2)}+\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+L^{-1}[\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}](https://tex.z-dn.net/?f=y%28t%29%3DL%5E%7B-1%7DY%28s%29%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%2B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2BL%5E%7B-1%7D%5B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2B8e%5E%7B-2t%7D)
To find the inverse Laplace transform of the first term you use partial fractions:

Thus, you have:
(this is the solution to the differential equation)
Answer:
D. 0.975
Step-by-step explanation:
ape.x