-Just look up “H2O lewis structure
-1.5
-Don’t know the VSEPR
-Polar Covalent
-Again, don’t know VSEPR
-Just look up H2O molecule
Density is given by the equation D=m/V, were D is density, m is mass in grams, and V is volume in cubic centimeters.
In this problem, we have density and we have mass so we can plug into the equation and solve for V.
38.6=270.2/V
<em>*Multiply both sides by V*</em>
38.6V=270.2
<em>*Divide both sides by 38.6*</em>
V=7
The volume of the gold nugget is 7cm3.
Hope this helps!!
Answer:
Upper H superscript plus, plus upper O upper H superscript minus right arrow upper H subscript 2 upper O.
Explanation:
i just took the test , i hope this helps:)
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
The answer lies in the large separation of atoms and molecules in gases, compared to their sizes, as illustrated in Figure 2. Because atoms and molecules have large separations, forces between them can be ignored, except when they collide with each other during collisions. The motion of atoms and molecules (at temperatures well above the boiling temperature) is fast, such that the gas occupies all of the accessible volume and the expansion of gases is rapid. In contrast, in liquids and solids, atoms and molecules are closer together and are quite sensitive to the forces between them.