Carbons starting from the left end:
- sp²
- sp²
- sp²
- sp
- sp
Refer to the sketch attached.
<h3>Explanation</h3>
The hybridization of a carbon atom depends on the number of electron domains that it has.
Each chemical bond counts as one single electron domain. This is the case for all chemical bonds: single, double, or triple. Each lone pair also counts as one electron domain. However, lone pairs are seldom seen on carbon atoms.
Each carbon atom has four valence electrons. It can form up to four chemical bonds. As a result, a carbon atom can have up to four electron domains. It has a minimum of two electron domains, with either two double bonds or one single bond and one triple bond.
- A carbon atom with four electron domains is sp³ hybridized;
- A carbon atom with three electron domains is sp² hybridized;
- A carbon atom with two electron domains is sp hybridized.
Starting from the left end (H₂C=CH-) of the molecule:
- The first carbon has three electron domains: two C-H single bonds and one C=C double bond; It is sp² hybridized.
- The second carbon has three electron domains: one C-H single bond, one C-C single bond, and one C=C double bond; it is sp² hybridized.
- The third carbon has three electron domains: two C-C single bonds and one C=O double bond; it is sp² hybridized.
- The fourth carbon has two electron domains: one C-C single bond and one C≡C triple bond; it is sp hybridized.
- The fifth carbon has two electron domains: one C-H single bond and one C≡C triple bond; it is sp hybridized.
Answer:
The same number of atoms of each element must appear on both sides of a chemical equation. However, simply writing down the chemical formulas of reactants and products does not always result in equal numbers of atoms. You have to balance the equation to make the number of atoms equal on each side of an equation.
Explanation:
Answer: i really dont know srry
Explanation:
Answer:
A gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure of 32.5 kPa.
<u>The pressure for oxygen is 3 kPa</u>
Explanation:
According to Dalton's Law of Partial Pressure total exerted by the mixture of non-reacting gases is equal to sum of the partial pressure of each gas.

So,
For , a gas mixture containing oxygen, nitrogen, and carbon dioxide has a total pressure:




Insert the values in :



Answer:
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km
<em>Note: The question is missing some parts. The complete question is as follows;</em>
<em>A penny has a thickness of approximately 1.0 mm . If you stack ed Avogadro's number of pennies one on top of the other on Earth 's surface, how far would the stack extend (in km)? [For comparison, the sun is about 150 million km from Earth and the nearest star (Proxim a Centauri) is about 40 trillion km from Earth.]</em>
Explanation:
Avogadro number = 6.02 * 10²³
thickness of a penny = 1.0 mm
I mm = 0.001 m
Thickness of Avogadro number of pennies stacked one upon another will be:
6.02 * 10²³ * 0.001 m = 6.02 * 10²⁰ m
Distance in km;
1 m = 0.001 km
therefore, 6.02 * 10²⁰ m = 6.02 * 10²⁰ * 0.001 km = 6.02 * 10¹⁷ km
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km