Answer:
it will a i did the quiz got it all right
Explanation:
Answer:
In the previous section, we discussed the relationship between the bulk mass of a substance and the number of atoms or molecules it contains (moles). Given the chemical formula of the substance, we were able to determine the amount of the substance (moles) from its mass, and vice versa. But what if the chemical formula of a substance is unknown? In this section, we will explore how to apply these very same principles in order to derive the chemical formulas of unknown substances from experimental mass measurements.
Explanation:
tally. The results of these measurements permit the calculation of the compound’s percent composition, defined as the percentage by mass of each element in the compound. For example, consider a gaseous compound composed solely of carbon and hydrogen. The percent composition of this compound could be represented as follows:
\displaystyle \%\text{H}=\frac{\text{mass H}}{\text{mass compound}}\times 100\%%H=
mass compound
mass H
×100%
\displaystyle \%\text{C}=\frac{\text{mass C}}{\text{mass compound}}\times 100\%%C=
mass compound
mass C
×100%
If analysis of a 10.0-g sample of this gas showed it to contain 2.5 g H and 7.5 g C, the percent composition would be calculated to be 25% H and 75% C:
\displaystyle \%\text{H}=\frac{2.5\text{g H}}{10.0\text{g compound}}\times 100\%=25\%%H=
10.0g compound
2.5g H
×100%=25%
\displaystyle \%\text{C}=\frac{7.5\text{g C}}{10.0\text{g compound}}\times 100\%=75\%%C=
10.0g compound
7.5g C
×100%=75%
The number of molecules involved in the reaction, in this case, the number of Ag atoms involved.
Answer:

Explanation:
Hello,
In this case, for the computation of the energy loss when the cooling process is carried out, we use the shown below equation:

Whereas we need the mass, specific heat and change in temperature of iron within the process. Thus, the only value we need is the specific heat that is 0.444 J/(g°C), therefore, we compute the heat loss:

Negative sign points out the loss due to the cooling.
Regards.
1. Only particles in the solid state are not in motion 2. The particles of a solid have less energy than gas 3. In a glass of iced tea the sugar in iced tea are the solvent and the water is the solute.