Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Answer:
d. To the left because Q > K_p
Explanation:
Hello,
In this case, for the given reaction:

The pressure-based equilibrium expression is:

In such a way, since Kp is given we rather compute the reaction quotient at the specificed pressure of carbon dioxide as shown below:

Therefore, since Q>Kp we can see that there are more products than reactants, which means that the reaction must shift leftwards towards the reactants in order to reestablish equilibrium, thus, answer is d. To the left because Q > Kp.
Regards.
Answer:
1st Blank: <em>1 Co</em>
2nd Blank:<em> 2 Na2S</em>
3rd Blank:<em> 4 Na</em>
4th Blank:<em> 1 CoS2</em>
Explanation:
<em>Trust me</em>
Answer:
go look for that on google
Explanation:
Answer:

Explanation:
Hello!
In this case, given this is an acid-base neutralization and we are considering a diprotic acid, we can write the following mole-mole relationship:

It means that the moles of acid can be computed given the volume and concentration of NaOH:

It means that the approximate molar mass of the acid is:

Best regards!