It is also likely (but not certain) that the photons will be absorbed by atoms. ... Light particles( or photons) never”run out” or loose their energy, so they can go an infinite distance, or until it reaches an object, that reflects the light or obsorbs it. Ie, a planet, or a mirror.
Answer:
Ball hit the tall building 50 m away below 10.20 m its original level
Explanation:
Horizontal speed = 20 cos40 = 15.32 m/s
Horizontal displacement = 50 m
Horizontal acceleration = 0 m/s²
Substituting in s = ut + 0.5at²
50 = 15.32 t + 0.5 x 0 x t²
t = 3.26 s
Now we need to find how much vertical distance ball travels in 3.26 s.
Initial vertical speed = 20 sin40 = 12.86 m/s
Time = 3.26 s
Vertical acceleration = -9.81 m/s²
Substituting in s = ut + 0.5at²
s = 12.86 x 3.26 + 0.5 x -9.81 x 3.26²
s = -10.20 m
So ball hit the tall building 50 m away below 10.20 m its original level
Answer:
When there is a change in magnetic flux linkage through a loop of wire, an electromotive force is induced in the loop, according to the Faraday-Newmann-Lenz Law:

where
N is the number of turns in the loop
is the change in magnetic flux through the loop
is the time elapsed
The negative sign in the formula represents Lenz's Law, and tells us about the direction of the electromotive force.
In fact, the negative sign means that the direction of the induced emf is such that to oppose to the change in the magnetic flux that originated the induced emf.
This is a consequence of the law of conservation of energy: no energy can be created out of nowhere. In fact, when the emf is induced in the loop, electrical energy appears in the circuit; however, this electric energy cannot come out of nowhere. Instead, it is just "created" from the transformation of some other form of energy (for instance, the mechanical energy that is used to move the loop in the magnetic field, and changing its magnetic flux).
The negative sign in Lenz's Law tells exactly this: the direction of the induced emf is such that it opposes the initial change in magnetic flux that generated the induced emf, so that overall the total energy is conserved.
Answer:
In the table, 1=46.7 °C, 1=165 J, 2=819 J, 3=1510 J, and 4=2830 J.
Other experiments determine that the material has a temperature of fusion of
fusion =235 °C and a temperature of vaporization of vapor=481 °C.
If the sample of material has a mass of =8.60 g, calculate the specific heat when this material is a solid, and when it is liquid, l
Given that
Velocity of missile (v) = 20 m/s ,
Angle of missile (Θ) = 53°
Determine , Vertical component = v sin Θ
= 20 sin 53°
= 15.97 m/s