Boyle's law<span> talks about the relationship </span>between<span> pressure and volume (high pressure = low volume, and vice-versa), while </span>Charles's law<span> talks about the relationship </span>between<span> volume and temperature (high temperature = high volume, and vice-versa).</span>
Answer:
M = 1433.5 kg
Explanation:
This exercise is solved using the Archimedean principle, which states that the hydrostatic thrust is equal to the weight of the desalinated liquid,
B = ρ g V
with the weight of the truck it is in equilibrium with the push, we use Newton's equilibrium condition
Σ F = 0
B-W = 0
B = W
body weight
W = M g
the volume is
V = l to h
rho_liquid g (l to h) = M g
M = rho_liquid l a h
we calculate
M = 1000 4.7 6.10 0.05
M = 1433.5 kg
According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
There are many factors which contributes as to how a machine will be processing the input energy and convert it to output energy. Even with identical mechanism, these factors will have major effect on the output. Some factors are deflection, friction and wear. Some system maybe exposed to poor lubrication than the other which'll produce more friction and wear thus lower mechanical advantage.