A quartile is a type of quantile which divides the number of data points into four more or less equal parts, or quarters. The first quartile (Q1) is defined as the middle number between the smallest number and the median of the data set. It is also known as the lower quartile or the 25th empirical quartile and it marks where 25% of the data is below or to the left of it (if data is ordered on a timeline from smallest to largest). The second quartile (Q2) is the median of a data set and 50% of the data lies below this point. The third quartile (Q3) is the middle value between the median and the highest value of the data set. It is also known as the upper quartile or the 75th empirical quartile and 75% of the data lies below this point.[1] Due to the fact that the data needs to be ordered from smallest to largest in order to compute quartiles, quartiles are a form of Order statistic.
Along with the minimum and the maximum of the data, which are also quartiles, the three quartiles described above provide a five-number summary of the data. This summary is important in statistics because it provides information about both the center and the spread of the data. Knowing the lower and upper quartile provides information on how big the spread is and if the dataset is skewed toward one side. Since quartiles divide the number of data points evenly, the range is not the same between quartiles (ie. Q3-Q2 ≠ Q2-Q1). While the maximum and minimum also show the spread of the data, the upper and lower quartiles can provide more detailed information on the location of specific data points, the presence of outliers in the data, and the difference in spread between the middle 50% of the data and the outer data points.
A quartile is a type of quantile. The first quartile (Q1) is defined as the middle number between the smallest number and themedian of the data set. The second quartile (Q2) is themedian of the data. The third quartile (Q3) is the middle valuebetween the median and the highest value of the data set.