Answer: The half-reactions represents reduction are as follows.
Explanation:
A half-reaction where addition of electrons take place or a reaction where decrease in oxidation state of an element takes place is called reduction-half reaction.
For example, the oxidation state of Cr in
is +6 which is getting converted into +3, that is, decrease in oxidation state is taking place as follows.

Similarly, oxidation state of Mn in
is +7 which is getting converted into +2, that is, decrease in oxidation state is taking place as follows.

Thus, we can conclude that half-reactions represents reduction are as follows.
Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.
Answer:
Volume of solution = 5 L
Explanation:
Given data:
Molarity of solution = 0.02 M
Moles of solute = 0.1 mol
Volume of solution = ?
Solution:
Molarity is used to describe the concentration of solution. It tells how many moles are dissolve in per litter of solution.
Formula:
Molarity = number of moles of solute / L of solution
by putting values,
0.02 M = 0.1 mol / volume of solution
Volume of solution = 0.1 mol / 0.02 M
Volume of solution = 5 L
Answer:
foetus, baby, child, adolescent, adult and old person
Explanation:
eeet eez wut eeet eez
Answer:
(a) 0.25 mol
(b) 0.11 mol
(c) 8.77 mol
Explanation:
(a)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 1.00 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 298 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:

(b)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 0.296 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 200 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:

(c)
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 30 atm
V = Volume of the gas = 6.0 L
T = Temperature of the gas = 250 K
R = Gas constant =
n = number of moles = ?
Putting values in above equation, we get:
