0.04m²
Explanation:
Given parameters:
Pressure = 250000Pa
Weight = 40000N
Unknown:
Area of each foot = ?
Solution:
Pressure is the force exerted per unit area of a body
Pressure = 
To find the area;
Area = 
Area =
= 0.16m²
The force exerted by all the four feet is 0.16m²
the area of each feet =
= 0.04m²
Learn more:
Pressure brainly.com/question/7139767
#learnwithBrainly
Answer:
The Resultant Induced Emf in coil is 4∈.
Explanation:
Given that,
A coil of wire containing having N turns in an External magnetic Field that is perpendicular to the plane of the coil which is steadily changing. An Emf (∈) is induced in the coil.
To find :-
find the induced Emf if rate of change of the magnetic field and the number of turns in the coil are Doubled (but nothing else changes).
So,
Emf induced in the coil represented by formula
∈ =
...................(1)
Where:
.
{ B is magnetic field }
{A is cross-sectional area}
.
No. of turns in coil.
.
Rate change of induced Emf.
Here,
Considering the case :-
&
Putting these value in the equation (1) and finding the new emf induced (∈1)
∈1 =
∈1 =
∈1 =![4 [-N\times\frac{d\phi}{dt}]](https://tex.z-dn.net/?f=4%20%5B-N%5Ctimes%5Cfrac%7Bd%5Cphi%7D%7Bdt%7D%5D)
∈1 = 4∈ ...............{from Equation (1)}
Hence,
The Resultant Induced Emf in coil is 4∈.
Answer: 
Explanation:
Given
Mass of the elevator is 
Time period of ascension 
cruising speed 
Distance moved by elevator during this time
Suppose Elevator starts from rest

Distance moved

Gain in Potential Energy is

Average power during this period is

Answer:
If voltage is kept constant across the resistor itself, it' current will reduce. If the resistance is part of oscillator circuit, frequency response will change. If it is in series with capacitor or inductor, it will change the damping effect.
Explanation:
If a circuit has a current of 3.6 Amps and resistance of 5 Ohms, then Ohm's law can be used to find the voltage. Ohm's law states that the voltage is equal to the product of current and resistance (V=IR). In this case the voltage is equal to 3.6 Amps x 5 Ohms = 18.0 Volts. The law can also be used with the rearranged equation to obtain current or resistance.