<span>Neo and Morpheus's masses have gained a velocity (not equal to zero) which means their momentum is now based on gravity and friction alone.</span>
Answer:
F = 7.2N
Explanation:
The resultant of two forces acting at some angle is given by using the vector addition as given below
F =√F1^2+F2^2+2F1F2cosθ
Where F1 = 6N and F2 = 8N
θ = 240°
Substituting the values into the equation above
F = √ 6^2+8^2+ 2(6×8)cos240
F =√ 36+64+96cos240
F = √ 100+96 ×-0.5
F = √ 100-48
F = √ 52
F = 7.211
F = 7.2N
Answer:

Explanation:
<u>Motion With Constant Acceleration
</u>
It's a type of motion in which the velocity of an object changes uniformly in time.
The formula to calculate the change of velocities is:

Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The roller coaster moves from vo=6 m/s to vf=70 m/s in t=4 seconds. To calculate the acceleration, solve for a:



Answer:
Both, potential energy and kinetic energy depends on mass. The higher the mass, the higher the energy. However, the difference is that potential energy depends on vertical height whereas kinetic energy depends on the velocity.
Explanation:
From the formula we can see that;
Potential Energy = mass* gravitational acceleration *vertical height.
Kinetic Energy = 0.5 * mass * (velocity)^2
Answer:
Explanation:
We shall represent displacement in vector form .Consider east as x axes and north as Y axes west as - ve x axes and south as - ve Y axes . 255 km can be represented by the following vector
D₁ = - 255 cos 49 i + 255 sin49 j
= - 167.29 i + 192.45 j
Let D₂ be the further displacement which lands him 125 km east . So the resultant displacement is
D = 125 i
So
D₁ + D₂ = D
- 167.29 i + 192.45 j + D₂ = 125 i
D₂ = 125 i + 167.29 i - 192.45 j
= 292.29 i - 192.45 j
Angle of D₂ with x axes θ
tan θ = -192.45 / 292.29
= - 0.658
θ = 33.33 south of east
Magnitude of D₂
D₂² = ( 192.45)² + ( 292.29)²
D₂ = 350 km approx
Tan