Taking into account the reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
<h3>Reaction stoichiometry</h3>
In first place, the balanced reaction is:
Ca₃P₂ + 6 H₂O → 3 Ca(OH)₂ + 2 PH₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Ca₃P₂:1 mole
- H₂O: 6 moles
- Ca(OH)₂: 3 moles
- PH₃: 2 moles
The molar mass of the compounds is:
- Ca₃P₂: 182 g/mole
- H₂O: 18 g/mole
- Ca(OH)₂: 74 g/mole
- PH₃: 34 g/mole
Then, by reaction stoichiometry, the following mass quantities of each compound participate in the reaction:
- Ca₃P₂: 1 mole ×182 g/mole= 182 grams
- H₂O: 6 moles× 18 g/mole= 108 grams
- Ca(OH)₂: 3 moles ×74 g/mole= 222 grams
- PH₃: 2 moles ×34 g/mole= 68 grams
<h3>Correct statements</h3>
Then, by reaction stoichiometry, you can observe that:
- one mole of Ca₃P₂ produces 2 mol of PH₃.
- the mole ratio between phosphine and calcium phosphide is 2 mol PH₃ over 1 mol Ca₃P₂.
Learn more about the reaction stoichiometry:
<u>brainly.com/question/24741074</u>
<u>brainly.com/question/24653699</u>
The textbook Would most likely have more gravitational potential energy because it is heavier. Things that are heavier have a larger gravitational pull and are pulled to the earth faster
Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
E. HCI
Source:
The Internet
Answer:
When you move the burette slider to the top of a flask and add about 25 mL of NaOH to the flask, you will cause a concentration of OH- molecules. This will make the solution become a basic solution and make the litmus paper blue.
Explanation:
After reading your question, we can see that you are carrying out a test to discover the nature of the pH of a solution. This type of test uses litmus paper, which is an indicator of the presence of acids and bases, being able to determine the pH of a solution. This paper is soaked in organic ink and when placed in an acidic solution, it is red in color. However, when placed in a basic solution it has a blue color.
An acidic solution is one that has a high concentration of H+ atoms and has the ability to donate electrons. The basic solution, on the other hand, has a high concentration of OH- and has the capacity to receive electrons.
When you move the burette slider to the top of a flask and add about 25 mL of NaOH to the flask, you will cause a concentration of OH- molecules. This will make the solution become a basic solution and make the litmus paper blue, that is, the solution has the basic pH.