Answer:
1) The cryosphere contains the frozen parts of the planet. This sphere helps maintain Earth's climate by reflecting incoming solar radiation back into space. As the world warms due to increasing greenhouse gases being added to the atmosphere by humans, the snow and ice are melting.
2) Organisms like the Frilled Shark, Giant Spider Crab. Atlantic Wolffish Pair, Fangtooth Fish, Six-Gill Shark, Giant Tube Worms, Vampire Squid, Pacific Viperfish. But there are most likely archaeabacteria which are prokaryotic bacteria or single-celled organisms. A Prokaryotic cell does not contain a nucleus. It only contains one chromosome and is a single-celled organism. It was the only form of life on earth for millions of years. Examples of a Prokaryotic cell are the different types of bacteria present today.
3) Many different types of plant and animal communities call estuaries home because their waters are typically brackish — a mixture of fresh water draining from the land and salty seawater. This unique combination of salty and fresh water creates a variety of habitats. Estuaries are full of decaying plants and animals. This makes the soil of estuaries rich in nutrients. Because the soil is so rich, lots of different plants grow in estuaries. The plants attract lots of different animals to the estuary and those animals attract other animals to the estuary.
4) Temperature, humidity, precipitation, air pressure, wind speed, and wind direction are key observations of the atmosphere that help forecasters predict the weather. These same factors have been used since the first weather observations were recorded. Observational data collected by doppler radar, radiosondes, weather satellites, buoys and other instruments are fed into computerized NWS numerical forecast models. The models use equations, along with new and past weather data, to provide forecast guidance to our meteorologists. The three main factors of weather are light (solar radiation), water (moisture) and temperature.
Explanation:
U dont have to copy and paste this put these are some ideas to use for ur answers
Answer:
c. 298 K
Explanation:
Nernst equation is an equation used in electrochemistry that relates the reduction potential of a reaction with the standard potential, temperature and concentrations of the reactants in that are been reducted and oxidized. The formula is:
E = E° - RT / nF ln [Red] / [Ox]
<em>Where R is gas constant (8.314J/molK), T is absolute temperature (In Kelvin), n are moles of electrons and F is faraday constant (K/Volt*mol)</em>
<em />
In electrochemistry, standard temperature is taken as 298K. That means by assuming standard temperature we can substitute T as:
<h3>c. 298 K</h3>
Movement of molecules from an area of higher concentration to one of lower concentration is called Diffusion
Answer: 162.8 grams
Explanation:
Magnesium nitrate has a chemical formula of Mg(NO3)2.
Given that:
Number of moles of Mg(NO3)2 = 1.1 moles
Mass in grams of Mg(NO3)2 = ?
For Molar mass of Mg(NO3)2, use atomic mass of magnesium = 24g, nitrogen = 14g, oxygen = 16g
Mg(NO3)2 = 24g + (14g + 16gx3) x 2
= 24g + (14g + 48g) x 2
= 24g + (62g) x 2
= 24g + 124g
= 148g/mol
Now, apply the formula:
Number of moles = Mass in grams / molar mass
1.1 moles = Mass / 148g/mol
Mass = 1.1 moles x 148g/mol
Mass = 162.8 grams
Thus, there are 162.8 grams of magnesium nitrate.
Answer:
The vapor pressure in solution is 0,0051 atm
Explanation:
This is the formula for vapor pressure lowering, the colligative property.
P vapor = Pressure sv pure . Xsv
Where Xsv is data.
Xsv means Molar fraction (moles solvent/total n° moles)
Vapor pressure of water, pure is 17.5 mmHg
P vapor = 0,0313 atm . 0163
P vapor in solution = 0,0051 atm
Molar fraction does not have units
A solution will have less vapor pressure than that observed in the pure solvent.