All 3 objects have the same mass
Answer:
(A) The wavelength of this wave is
.
(B) The amplitude of this wave is
.
Explanation:
Refer to the diagram attached. A point on this wave is at a crest or a trough if its distance from the equilibrium position is at a maximum.
The amplitude of a wave is the maximum displacement of each point from the equilibrium position. That's the same as the vertical distance between the crest (or the trough) and the equilibrium position.
- On the diagram, the distance between the two gray dashed lines is the vertical distance between a crest and a trough. According to the question, that distance is
for the wave in this rope. - On the other hand, the distance between either gray dashed line and the black dashed line is the distance between a crest (or a trough) and the equilibrium position. That's the amplitude of this wave.
Therefore, the amplitude of the wave is exactly
the vertical distance between a crest and a trough. Hence, for the wave in this question,
.
The wavelength of a transverse wave is the same as the minimum (horizontal) distance between two crests or two troughs. That's twice the horizontal distance between a crest and a trough in the same period.
.
(a) The acceleration of the salt shaker is 1.18 m/s².
(b) The distance traveled by the baseball player before coming to rest is 204.1 m.
<h3>
Acceleration of the salt shaker</h3>
The acceleration of the salt shaker at the given coefficient of kinetic friction is determined as follows;
a = μg
a = 0.12 x 9.8
a = 1.18 m/s²
Acceleration of the baseball player is calculated as follows;
a = μg
a = 0.4 x 9.8
a = 3.92 m/s²
<h3>Distance traveled by the baseball player</h3>
The distance traveled by the baseball player before coming to rest is calculated as follows;
v² = u² - 2as
0 = 40² - 2(3.92)s
0 = 1600 - 7.84s
7.84s = 1600
s = 204.1 m
The complete question is below:
A baseball player slides into third base with an initial speed of 40 m/s. If the coefficient of kinetic friction between the player and the ground is 0.40, how far does the player slide before coming to rest?
Learn more about coefficient of friction here: brainly.com/question/20241845
<span>when it returns to its original level after encountering air resistance, its kinetic energy is
decreased.
In fact, part of the energy has been dissipated due to the air resistance.
The mechanical energy of the ball as it starts the motion is:
</span>

<span>where K is the kinetic energy, and where there is no potential energy since we use the initial height of the ball as reference level.
If there is no air resistance, this total energy is conserved, therefore when the ball returns to its original height, the kinetic energy will still be 100 J. However, because of the presence of the air resistance, the total mechanical energy is not conserved, and part of the total energy of the ball has been dissipated through the air. Therefore, when the ball returns to its original level, the kinetic energy will be less than 100 J.</span>
The terrestrial planets are those that are similar to Earth. In Laint terra means Earth and Earth is Tierra.
The terrestrial planets have solid surface made up of rocks and metals.
There are four terrestrial planet in our planetary (solar) system: Mercury, Venus, Earth and Mars.
You can verify the sizes of those planets in many places.
Earth is the largest of the terrestrial planets.