The mass of atoms of carbon and 3 molecules of hydrogen : 18 g/mol
<h3>Further explanation
</h3>
An atomic mass unit ( amu or "u") is a relative atomic mass of 1/12 the mass of an atom of carbon-12.
The molar mass(molecular mass-formula mass-molecular weight(MW)) of a compound is the sum of the relative atomic mass (Ar) of the constituent elements of the compound
Can be formulated :
M AxBy = (x.Ar A + y. Ar B)
The mass of atom of Carbon(C)⇒Ar = 12 g/mol
The mass of 1 molecule of Hydrogen - H₂(MW) : 2 g/mol
The mass of 3 molecules of Hydrogen : 3 x 2 = 6 g/mol
So the mass of atoms of carbon and 3 molecules of hydrogen :

Mass and atoms are the properties conserved in every ordinary chemical reaction.
Hope this helps!
The organism that would have the most variation in the DNA of its offspring is the cat (Option C). Meiosis is a type of cell division that generates more genetic variability than asexual types of reproduction.
Meiosis is a type of reductional cell division by which a parental cell produces 4 daughter cells (gametes), each containing half of the genetic material.
Animals (e.g., cats) generate gametes by meiosis which fuse during fertilization to produce new offspring.
Both amoeba and bacteria reproduce by a type of asexual reproduction called binary fission. Moreover, yeasts also reproduce asexually by a process called budding and fission.
Both asexual and sexual types of reproduction generate genetic variability by the emergence of new mutations in daughter cells.
Meiosis generates much more genetic variability than asexual types of reproduction due to two different processes:
- Random assortment of chromosomes, which produces new allele combinations.
- Recombination, i.e., by the exchange of genetic material (DNA) between non-sister chromatids during Prophase I.
Learn more in:
brainly.com/question/7002092
Answer:
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Explanation:
Hello,
In this case, for the described situation, we infer that calcium reacts with fluoride ions to yield insoluble calcium fluoride as shown below:

Which is typically an equilibrium reaction, since calcium fluoride is able to come back to the ions. In such a way, since the maximum amount is computed via stoichiometry, we can see a 1:2 mole ratio between the ions, therefore, the required maximum amount of fluoride ions in the "hard" water (assuming no other ions) turns out:
![[F^-]_{max}=2.0x10^{-3}\frac{molCa^{2+}}{L}*\frac{2molF^-}{1molCa^{2+}} \\](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D2.0x10%5E%7B-3%7D%5Cfrac%7BmolCa%5E%7B2%2B%7D%7D%7BL%7D%2A%5Cfrac%7B2molF%5E-%7D%7B1molCa%5E%7B2%2B%7D%7D%20%20%5C%5C)
![[F^-]_{max}=4x10{-3}\frac{molF^-}{L}](https://tex.z-dn.net/?f=%5BF%5E-%5D_%7Bmax%7D%3D4x10%7B-3%7D%5Cfrac%7BmolF%5E-%7D%7BL%7D)
Best regards.