Answer:
D
Explanation:
According to this question, each model of molecules in the options contains spheres of different colors and sizes representing different types of atoms. The atoms of the same element are the spheres of same color and size while atoms of different element are of different color or size.
Therefore, the model showing a molecule of a substance that is made up of three elements is model D because it is made up of three distinct spheres representing atoms of each element.
- The red sphere is the atom of the first element
- The big dark sphere is the atom of the second element
- The small white sphere is the atom of the third element
Answer : The molecule
is a polar molecule.
Explanation :
Polar molecule : When the arrangement of the molecule is asymmetrical then the molecule is polar.
Non-polar molecule : When the arrangement of the molecule is symmetrical then the molecule is non-polar.
The given molecule is, 
The electronegativities of oxygen and fluorine are different. The molecular geometry of
is bent. As, Fluorine is more elctronegative than the oxygen. So, the arrows putting towards the more electronegative element i.e, fluorine. These arrows do not balance each other. Due to this, the asymmetrical arrangement of these bonds makes the molecule polar.
Hence, the given molecule
is polar.
when iron and oxygen the reactin form Fe2O3 balance equation for this is <span>4Fe + 3O2---> 2Fe2O3
9moles of O2 are needed to produce 6mol of Fe2O3 since the ratio of oxygen to iron(II)oxide is 3:2
hope its help</span>
Answer:
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]
Explanation:
The equilibrium constant indicates the % of the yield reaction and can shows where the reaction is going to be equilibrated.
It works with molar concentrations on the equilibrium and it does not consider the solids compounds
Kc also can be modified by the time of the reaction.
This reaction is:
CS₂ (g) + 4 H₂O(g) ⇌ CH₄ (g) + 2H₂S (g)
Kc = [H₂S]² . [CH₄] / [ H₂O]⁴ . [CS₂]
The mass of an element listed in the Periodic Table is the weighted average of all its naturally occurring isotopes.
Naturally occurring carbon is about
99 % carbon-12 (12.000 u) + 1 % carbon-13 (13.003 u).
That extra carbon-13 makes the <em>average atomic mass</em> greater than 12.000 u.