<span>Ohm's law deals with the relation between
voltage and current in an ideal conductor. It states that: Potential difference
across a conductor is proportional to the current that pass through it. It is
expressed as V=IR. Therefore, the correct answer is option B, the voltage would increase as well.</span>
Answer:
1.5024
Explanation:
Draw a diagram. Put the two cells in series. Now draw 3 resistors. Two of them equal 0.26 ohms each. The third one is the lightbulb which is 12 ohms.
R = 0.26 + 0.26 + 12 = 12.52
The bulb has a voltage of 2.88 volts across it. You can get the current from that.
i = E / R
i = 2.88 / 12 =
i = 0.24 amps.
Now you can get the voltage drop across the two cells.
E = ?
R = 0.26
i = 0.24 amps
E = 0.26 * 0.24
E = 0. 0624
Finally divide the 2.88 by 2 to get 1.44
Each cell has an emf of 1.44 + 0.0624 = 1.5024
The density of seawater plays a vital role in causing ocean currents and circulating heat because of the fact that dense water sinks below less dense. long story short, seawater is the problem because its denser than pure water.
Answer:
Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
Explanation:
A dielectric (or dielectric material) is an electrical insulator that can be polarized by an applied electric field. When a dielectric material is placed in an electric field, electric charges do not flow through the material as they do in an electrical conductor but only slightly shift from their average equilibrium positions causing dielectric polarization
Types of dielectric material
Ceramic, Mica paper glass