Answer:
The answer is A and C.
Explanation:
Only two factors are relevant when dealing with the gravitational force between two objects - their mass and their distance apart from one another. Gravity's force is proportional to the product of the masses of the two objects and is inversely proportional to the square of the distance between them.
Answer:
Energy is force times distance. For your problem, no matter how long you push, the wall still goes nowhere, so there is no obvious energy transfer. so in conclusion, you actually didn't do anything :(
Explanation:
The rotation of Earth is equivalent to one day which is comprised of 24 hours. To determine the number of miles in Earth's circumference, one simply have to multiply the given rate by the appropriate conversion factor and dimensional analysis. This is shown below.
C = (1038 mi/h)(24 h/1 day)
C = 24,912 miles
From the given choices, the nearest value would have to be 20,000 mile. The answer is the second choice.