The answer is: when the aim is to show electron distributions in shells
An orbital notation is more appropriate if you want to show how the electrons of an atom are distributed in each subshell. This is because there are some atoms that have special electronic configurations that aren't obvious in just written configurations.
Answer:
2Mg + O₂ → 2MgO
Explanation:
Chemical equation:
Mg + O₂ → MgO
Balanced chemical equation:
2Mg + O₂ → 2MgO
The balanced equation s given above and it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Steps to balanced the equation:
Step 1:
Mg + O₂ → MgO
Mg = 1 Mg = 1
O = 2 O = 1
Step 2:
2Mg + O₂ → MgO
Mg = 2 Mg = 1
O = 2 O = 1
Step 3:
2Mg + O₂ → 2MgO
Mg = 2 Mg = 2
O = 2 O = 2
Answer:
C
Explanation:
A negative deltaH means that the reaction has to give up heat in order to happen. You have to treat deltaH as a reactant. So the question is do you need to add heat to the reactants to make the products. If you do, deltaH is plus.
Heat is required to make a solid go to a gas. deltaH is plus. A is not the answer.
A lot of heat is required for B (something like 400 Kj / mole. Like A, deltaH is plus and B is not the answer.
C: The liquid has to give up heat in order for the this reaction to take place. C is the answer.
D requires heat. It is not the answer.
M1 = 17.45 M
M2 = 0.83 M
V2 = 250 ml
M1. V1= M2. V2
V1 = (M2. V2)/M1 = (0.83× 250)/ 17.45= 11.89 ml
Usually in this context you would be referring to the boiling and freezing point of a NaCl <em>solution</em> (saltwater) compared to pure H_{2}O. Sematics would be different for NaCl compound itself, you would say melting and boiling point for a solid substance- and the temperatures would be very, very radical (high).
The boiling point of pure water is 100 degrees C (212 F), and the freezing/melting point is below 0 degrees C (32 F). For a salt water solution, the boiling point is raised and the melting point is lowered. This means that water will stay liquid for an increased range of temperature. Depending on the amount of NaCl solute in the water, the boiling and melting points may change a few degrees.