Given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
<h3>
What is Speed?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Speed of the Ultraviolet light c = 3.0 × 10⁸m/s = 1.08 × 10⁹km/h
- Distance it must cover d = 4.0 × 10¹³km
We substitute our given values into the expression above.
Speed = Distance ÷ time
1.08 × 10⁹km/h = 4.0 × 10¹³km ÷ t
t = 4.0 × 10¹³km ÷ 1.08 × 10⁹km/h
t = 3.7 × 10⁴ hrs
Therefore, given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
Learn more about speed here: brainly.com/question/7359669
#SPJ4
Answer:
a counterclaim
Explanation:
authors purpose is what an author wrote somthing for
opinion is someones thoughts or "side" on a argument
an arguement is a battle of opinions if that makes sense
The answer is B. One plate slides past another.
The San Andreas Fault in California and the Alpine Fault in New Zealand are examples of transform boundaries.
Hope this helps! :)
We must remember that the total net force equation at
constant velocity is:
<span>F – Ff = 0</span>
of
F - µN = 0
Using Newton's 2nd Law of Motion:<span>
F = m a
<span>Where,
F = net force acting on the body
m = mass of the body
a = acceleration of the body
Since the cart is moving at a constant velocity, then
acceleration is zero, hence the working equation simplifies to
F = net Force = 0
Therefore,
F - µN = 0
where
µ = coefficient of friction = 0.20
N = normal force acting on the cart = 12 N
Therefore,
F - 0.20(12) = 0
<span>
F = 2.4 N </span></span></span>