In a parallel circuit, the total resistance calculated from the individual resistances is computed from the formula: 1/Rt = 1/R1 + 1/R2. substituting R1 and R2, then
1/Rt = 1/7 + 1/49
1/Rt = 1/6.125 = 1/ 49/8
Rt = 49/8 <span>Ω
The total resistance hence is </span>49/8 Ω
At rest, when travelling at a constant speed, and when in mechanical equilibrium, there is no acceleration and answer choice D is correct.
<h3>How would you define acceleration?</h3>
In mechanics, acceleration describes the rate at which a driving object's velocity changes over time. They are accelerations and vector quantities. The direction of an object's acceleration is determined by the direction of the net force acting on it. Depending on whether an object is moving faster, slower, or in a different direction, its velocity may change. Examples of acceleration include a falling apple, the moon orbiting the earth, and a car that has stopped at a stop sign. The car is positively accelerating if the speed is increasing. As the car slows down, its speed decreases. A decline in speed is referred to as negative acceleration. In both situations, the car is traveling ahead, yet one has a positive acceleration and the other a negative one.
To learn more about acceleration, click here:
brainly.com/question/2303856
#SPJ4
Answer:
Two stationary positive point charges, charge 1 of magnitude 3.45 nC and charge 2 of magnitude 1.85 nC, are separated by a distance of 50.0 cm. An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. What is the speed v(final) of the electron when it is 10.0 cm from
The answer to the question is
The speed
of the electron when it is 10.0 cm from charge Q₁
= 7.53×10⁶ m/s
Explanation:
To solve the question we have
Q₁ = 3.45 nC = 3.45 × 10⁻⁹C
Q₂ = 1.85 nC = 1.85 × 10⁻⁹ C
2·d = 50.0 cm
a = 10.0 cm
q = -1.6×10⁻¹⁹C
Also initial kinetic energy = 0 and
Initial electric potential energy = 
Final kinetic energy due to motion = 0.5·m·v²
Final electric potential energy = 
From the energy conservation principle we have

Solving for v gives

where k = 9.0×10⁹ and m = 9.109×10⁻³¹ kg
gives v =7528188.32769 m/s or 7.53×10⁶ m/s
= 7.53×10⁶ m/s
B. Doldrums. I cant actually explain it i just know its the answer