The faster car behind is catching up/closing the gap/gaining on
the slow truck in front at the rate of (90 - 50) = 40 km/hr.
At that rate, it takes (100 m) / (40,000 m/hr) = 1/400 of an hour
to reach the truck.
(1/400 hour) x (3,600 seconds/hour) = 3600/400 = <em>9 seconds</em>, exactly
Answer:
Converted to an amount of energy equal to 4 million tons times the speed of light squared. ejected into space in a solar wind.
Explanation:
The 4 million tons of mass is converted to the amount of energy that is equal to 4 million tons times the speed of light squared. This energy moves from the sun with the help of solar winds and received by the planets present in the solar system. This solar energy moves in the form of solar radiation because there is no medium for propagation so that's why we can say that the mass is converted into energy that moves in the form of radiation in discrete packets.
Answer:
A wave is a disturbance of the space (or of a medium), that carries energy without transmitting matter.
A wave is produced when there is a periodic vibration in the particles of a medium (mechanical wave), or when there is a periodic oscillation of the electric and magnetic fields (electromagnetic waves). Electromagnetic waves are the only ones that can travel through a vacuum.
Mechanical waves are further classified into two types, depending on how the particles in the medium vibrate:
- If they vibrate up and down (perpendicular to the direction of motion of the wave), they are called transverse waves
- If they vibrate back and forth (parallel to the direction of motion of the wave), they are called longitudinal waves
In general, waves are generated from a precise point in the space, which is called source of the wave. The source of the wave does work, since it is responsible for starting the motion of the particle, and make them starting vibrating, so it transmits energy to the particles.
Answer:
0.022kg/s
Explanation:
We are given that
Mass of boiled egg=46 g=

Constant force=F=25.6 N/m
Initial displacement=
Final displacement=
Time=t=4.55 s
Damping force=
We have to find the magnitude of damping constant b.
We know that the displacement of the oscillator under damping motion is given by

For maximum displacement 
Therefore , 
Substitute the values




Substitute the values




Hence,the magnitude of damping constant b=0.022kg/s
V=r/t
Speed equals displacement over the time
V=100/9.92=10.08ms^-1