The velocity is 60 because you divide your distance by your time (240÷4=60)
Miguel Hidalgo was a Priest so I think it would be 1.
Hope I Helped ( :
1. The balls move to the opposite direction but the same speed. This represents Newton's third law of motion.
2. The total momentum before and after the collision stays constant or is conserved.
3. If the masses were the same, the velocities of both balls after the collision would exchange.
4 and 5. Use momentum balance to solve for the final velocities.
Answer:
ωf = 0.16 rad/s
Explanation:
Moment of inertia of the child = mr² = 20(1.6²) = 51.2 kg•m²
Moment of Inertia of the MGR = ½mr² = ½(180)1.6² = 230.4 kg•m²
(ASSUMING it is a uniform disk)
Initial angular momentum of the child = Iω = I(v/r) = 51.2(1.4/1.6) = 44.8 kg•m²/s
Conservation of angular momentum
44.8 = (51.2 + 230.4)ωf
ωf = 0.15909090...
the effect of pressure on surface tension can be attributed in part to absorption of gas at the surface of the liquid and in part to an intrinsic decrease in density of the liquid in the neighborhood of the surface.
In the case of liquids , Owing to contact forces between the edge of the surface and the vessel, the surface acquires a curvature, and if the liquid rises up at the edges where it meets the vessel, the pressure will be less in the liquid than in the air, for points just below and just above the surface. The vessel exerts an upward force on the liquid. This is simply a matter of looking at the directions of forces acting, knowing that the surface is under tension.