Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.
Answer:
All cells have structural and functional similarities. Structures shared by all cells include a cell membrane, an aqueous cytosol, ribosomes, and genetic material (DNA). All cells are composed of the same four types of organic molecules: carbohydrates, lipids, nucleic acids, and proteins.
Explanation:
⊂_ヽ
\\ Λ_Λ
\( ˇωˇ)
> ⌒ヽ
/ へ\
/ / \\
レ ノ ヽ_つ
/ / YOU GOT DAT
( (ヽ
| |、\
| 丿 \ ⌒)
| | ) /
ノ ) Lノ
(_/
Answer:
They are 1.204×10^24 atoms of hydrogen present in 18 grams of water. In order to calculate this,it is necessary to compute the number of hydrogen moles present in the sample.
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of phosphorus = 25.0 g
Mass of oxygen = 50.0 g
What is limiting reactant ?
Solution:
Chemical equation:
P₄ + 5O₂ → P₄O₁₀
Number of moles of P₄:
Number of moles = mass/molar mass
Number of moles = 25.0 g/ 123.89 g/mol
Number of moles = 0.20 mol
Number of moles of O₂:
Number of moles = mass/molar mass
Number of moles = 50.0 g/ 32 g/mol
Number of moles = 1.56 mol
now we will compare the moles of reactants with product:
P₄ : P₄O₁₀
1 : 1
0.20 : 0.20
O₂ : P₄O₁₀
5 : 1
1.56 : 1/5×1.56 = 0.312 mol
Less number of moles of product are formed by the oxygen thus it will act as limiting reactant.