As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


Answer:
3ohms
Explanation:
From Ohm's Law
V = IR
V is that voltage = 3volts
I = current = 1amp
R = resistance in ohms
Putting those values into the above formula.
3volts = 1amp×R
Making R the subject
R = 3/1
R = 3ohms
The resistance of the light bulb is 3ohms.
Actual Mechanical Advantage(AMA) = Weight / Force
Here, Weight = 764 N
Force = 255 N
Substitute the values in to the expression,
AMA = 764 / 255
AMA = 2.99
After rounding-off to the nearest tenth value, it would be 3
Finally, option C would be your answer.
Hope this helps!
Answer:
0.5 m/s².
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
Acceleration can simply be defined as the rate of change of velocity with time. Mathematically, it is expressed as:
a = (v – u) / t
Where:
a is the acceleration.
v is the final velocity.
u is the initial velocity.
t is the time.
With the above formula, we can obtain the acceleration of the car as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 10 m/s
Time (t) = 20 s
Acceleration (a) =?
a = (v – u) / t
a = (10 – 0) / 20
a = 10/20
a = 0.5 m/s²
Therefore, the acceleration of the car is 0.5 m/s².