Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - 
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
Answer:
d. 50 C
Explanation:
In this problem, we have to add 800 ml of water at 20 Celsius to 800 ml of water at 80 Celsius.
According to the 2nd law of thermodynamics, heat transfers from hot to cold temperature.
The quantity of both the different waters is equal so this makes it very easy. All we have to do is find the mean of both the temperatures:
Final temperature = (20 C + 80 C)/2
= 50 Celsius