We will hear the sound of siren of frequency 1553.4606 Hz.
<h3>What is Doppler Effect?</h3>
The apparent change in wave frequency brought on by the movement of a wave source is known as the Doppler effect. When the wave source is coming closer and when it is moving away, the perceived frequency changes. The Doppler effect explains why we hear a passing siren's sound changing in pitch.
according to Dopplers Effect,
![f'=[\frac{v + v_{0} }{v - v_{s} } ]f](https://tex.z-dn.net/?f=f%27%3D%5B%5Cfrac%7Bv%20%2B%20v_%7B0%7D%20%7D%7Bv%20-%20v_%7Bs%7D%20%7D%20%5Df)
![f'= [\frac{700+68.1}{700-94.8} ]* 1224](https://tex.z-dn.net/?f=f%27%3D%20%5B%5Cfrac%7B700%2B68.1%7D%7B700-94.8%7D%20%5D%2A%201224)

the frequency would be 1553.4606 Hz.
to learn more about Doppler Effect go to - brainly.com/question/9165991
#SPJ4
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s
Answer:
Twice as fast
Explanation:
Solution:-
- The mass of less massive cart = m
- The mass of Massive cart = 2m
- The velocity of less massive cart = u
- The velocity of massive cart = v
- We will consider the system of two carts to be isolated and there is no external applied force on the system. This conditions validates the conservation of linear momentum to be applied on the isolated system.
- Each cart with its respective velocity are directed at each other. And meet up with head on collision and comes to rest immediately after the collision.
- The conservation of linear momentum states that the momentum of the system before ( P_i ) and after the collision ( P_f ) remains the same.

- Since the carts comes to a stop after collision then the linear momentum after the collision ( P_f = 0 ). Therefore, we have:

- The linear momentum of a particle ( cart ) is the product of its mass and velocity as follows:
m*u - 2*m*v = 0
Where,
( u ) and ( v ) are opposing velocity vectors in 1-dimension.
- Evaluate the velcoity ( u ) of the less massive cart in terms of the speed ( v ) of more massive cart as follows:
m*u = 2*m*v
u = 2*v
Answer: The velocity of less massive cart must be twice the speed of more massive cart for the system conditions to hold true i.e ( they both come to a stop after collision ).
I need to see the diagram
Answer:
C. 2 and 4
Explanation:
my teacher went over it and the answer was that