C
Decomposition is of this form: A becomes B+C ... so after the reaction, the element A DECOMPOSES into two smaller elements, B and C.
Synthesis is the opposite: B+C becomes A AFTER THE REACTION.
Hope that helps :))
Answer:
0.85 mole
Explanation:
Step 1:
The balanced equation for the reaction of CaCl2 to produce CaCO3. This is illustrated below:
When CaCl2 react with Na2CO3, CaCO3 is produced according to the balanced equation:
CaCl2 + Na2CO3 -> CaCO3 + 2NaCl
Step 2:
Conversion of 85g of CaCO3 to mole. This is illustrated below:
Molar Mass of CaCO3 = 40 + 12 + (16x3) = 40 + 12 + 48 = 100g/mol
Mass of CaCO3 = 85g
Moles of CaCO3 =?
Number of mole = Mass /Molar Mass
Mole of CaCO3 = 85/100
Mole of caco= 0.85 mole
Step 3:
Determination of the number of mole of CaCl2 needed to produce 85g (i.e 0. 85 mole) of CaCO3.
This is illustrated below :
From the balanced equation above,
1 mole of CaCl2 reacted to produced 1 mole of CaCO3.
Therefore, 0.85 mole of CaCl2 will also react to produce 0.85 mole of CaCO3.
From the calculations made above, 0.85 mole of CaCl2 is needed to produce 85g of CaCO3
Answer:
2.75 mol
Explanation:
Given data:
Mass of Nitrogen = 38.5 g
Moles of ammonia produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Number of moles of nitrogen:
Number of moles = mass/ molar mass
Number of moles = 38.5 g/ 28 g/mol
Number of moles = 1.375 mol
Now we will compare the moles of ammonia and nitrogen from balance chemical equation.
N₂ : NH₃
1 : 2
1.375 : 2×1.375 = 2.75 mol
Thus 2.75 moles of ammonia are produced from 38.5 g of nitrogen.