Answer:
A
Explanation:
There are three states of mater; solid liquid and gas. The sold state is the difficult to compress while the gaseous state is quite easy to compress.
A gas is easily compressed because the particles in a gas are far apart from each other. A solid is difficult to compress because the particles of a solid are close together. From all the above statements, it is easily deducible that the compressibility property of a substance in a particular state of matter depends on the proximity of the particles to each other, hence the answer above.
Kepler did not study the speed of the planets, rather, he studied how the planets move in the solar system. He proposed three laws. As a summary, he described that the planets move around the sun in the shape of an ellipse (orbit), and the Sun being one of the foci. Then, he proposed the period for the planet to complete one revolution around the Sun.
On the other hand, Newton studied the forces acting on the planet (or any object in space) that explain how the planets move around the solar system as described by Kepler. Also, Kepler's observations only apply to planets and not the moons or satellites. Thus, Kepler only made laws from observations, while Newton based it from underlying principles that led him to mathematical equations such as the law of universal gravitation.
Answer:
0.48
Explanation:
all you need is to decide 12% with 100% then you multiply it by 4L.
Answer:
Covalent bond.
Explanation:
There are two kinds of chemical bonds: covalent bonds and ionic bonds.
- A covalent bond is formed when two atoms share a pair of electrons (two electrons for each bond.)
- Ions are formed when one atom transfers an electron to another. Ionic bonds refer to the attraction between ions of opposite electric charges.
In this example, since the atoms are sharing atoms, the chemical bond between them would be a covalent bond.