The heat that is needed to raise the temperature of 78.4 g of aluminium from 19.4 °c to 98.6°c is 5600.77 j
<u><em>calculation</em></u>
Heat(Q) = mass(M) x specific heat capacity (C) x change in temperature(ΔT)
where;
Q=?
M = 78. 4 g
C=0.902 j/g/c
ΔT=98.6°c -19.4°c =79.2°c
Q is therefore = 78.4 g x 0.902 j/g/c x 79.2°c =5600.77 j
Answer:
3
Explanation:
pH=-log(H+)
- Hope that helps! Please let me know if you need further explanation.
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
<u>Out of all given option, the following statements are true about a system:</u>
- A system is a group of objects analyzed as one unit.
- Energy that moves across system boundaries is conserved
Answer: Option A and B
<u>Explanation:</u>
A system is "a complicated item whose parts or segments are identified with probably a portion of different segments", it very well may be material or calculated. All systems have piece, structure, and condition, yet just material systems have instruments (or forms), and just some material systems have shape.
As per systems, all articles are systems or segments of another system. For instance, a nuclear core is a physical material system made out of protons and neutrons related by solid atomic association; a cell is a natural material system made out of related organelles by non-covalent synthetic securities and metabolic pathways; and a logical hypothesis is a consistent reasonable system made out of theories, definitions, and hypotheses related by relationship and conclusion.