Answer:
Moles of NO₂ = 0.158
Explanation:
SO 2 ( g ) + NO 2 ( g ) ⇄ SO 3 ( g ) + NO ( g )
According to the law of mass equation
= ![\frac{[SO_{3} ][NO]}{[SO_{2}][NO_{2} ]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BSO_%7B3%7D%20%5D%5BNO%5D%7D%7B%5BSO_%7B2%7D%5D%5BNO_%7B2%7D%20%20%5D%7D)
⇒ 3.10 =
At equilibrium [SO₃] = [NO]
⇒ [NO₂] = 
⇒ [NO₂] = 0.158
So. number of moles of NO₂ at equilibrium added = 0.158
They help scientists understand complex ideas and objects that aren’t easy to handle.
Answer: The pressure in the can is 4.0 atm
Explanation:
According to ideal gas equation:
P = pressure of gas = ?
V = Volume of gas = 0.410 L
n = number of moles =
R = gas constant =
T =temperature =
Thus the pressure in the can is 4.0 atm
Answer:
Explanation:
Initial burette reading = 1.81 mL
final burette reading = 39.7 mL
volume of NaOH used = 39.7 - 1.81 = 37.89 mL .
37.89 mL of .1029 M NaOH is used to neutralise triprotic acid
No of moles contained by 37.89 mL of .1029 M NaOH
= .03789 x .1029 moles
= 3.89 x 10⁻³ moles
Since acid is triprotic , its equivalent weight = molecular weight / 3
No of moles of triprotic acid = 3.89 x 10⁻³ / 3
= 1.30 x 10⁻³ moles .