Rf value is the ratio of the distance traveled by the solute to that of the solvent front on the paper used in chromatographic separation.
From the image it is clear the distance traveled by solvent front = 7.3 cm
Distance traveled by the component -1 of the mixture = 1.4 cm
Distance traveled by the component -2 of the mixture = 3.0 cm
Distance traveled by the component -3 of the mixture = 4.5 cm
Distance traveled by the component -4 of the mixture = 6.5 cm
Rf value of component-1 = 
Rf value of component-2 = 
Rf value of component-3 = 
Rf value of component-4 = 
b) Samples can be separated from a mixture using chromatography as the relative affinities for the compounds towards the paper (stationary phase) and the solvent(mobile phase) are different. Each component spends different amounts of time on the stationary phase depending on it chemical nature. So, the components in a mixture can be separated based on their polarities and relative degrees of adsorption on the stationary phase.
If 2.34 moles of Mg react with 3.56 moles of l2 and 1.76 moles of Mgl2 form, what is the percent yield?
Answer:
2.00 moles of Ni has 1.2 *10^24 atoms
Explanation:
Step 1: Data given
Number of moles Ni = 2.00 moles
Number of Avogadro = 6.022*10^23 /mol
Step 2: Calculate number of atoms
Number of particles (=atoms) = Number of Avogadro * number of moles
Number of atoms = 6.022 * 10^23 /mol * 2.00 moles
Number of atoms = 1.2*10^24 atoms
2.00 moles of Ni has 1.2 *10^24 atoms
Answer:
Explanation:
Scientific laws or laws of science are statements, based on repeated experiments or observations, that describe or predict a range of natural phenomena.[1] The term law has diverse usage in many cases (approximate, accurate, broad, or narrow) across all fields of natural science (physics, chemistry, astronomy, geoscience, biology). Laws are developed from data and can be further developed through mathematics; in all cases they are directly or indirectly based on empirical evidence. It is generally understood that they implicitly reflect, though they do not explicitly assert, causal relationships fundamental to reality, and are discovered rather than invented.[2]
Answer:
1 .
2.
Explanation:
The more stable the ionic compound, the more is it lattice energy.
- The more the charge on the cation and the anion, the greater is the lattice energy.
- The less the size of the cation and the anion, the greater is the lattice energy.
Scandium oxide (
) is an oxide in which
behaves as cation and
behaves as anion.
The compounds which has higher lattice energy than scandium oxide are:
1 .
This is because the charge are same on the cation and the anion as in the case of the Scandium oxide but the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.
2.
This is because the charge on the cation
is greater than that of
and also the size of the cation
is smaller than
. Thus, this corresponds to higher lattice energy.