Answer:
It's a, trust me I'm very good with chemistry
Answer:
The structures shown by dots and lines to give the exact number of electrons in the outer most shell is explained by Lewis Structures.
Explanation:
Lewis structures are those structures in which the diagram is shown using the electron representation. They are easy to understand as the diagram completely depicts where the electrons are shared and where they are transferred. The diagram also explains where there is a single bond and where there is a di covalent bond or tri covalent bond explaining where the single , double or triple electron pair is shared. The electrons are shown by dots or lines.
For example CCl₄ can be shown as follows
..
.. Cl..
.. ..
..Cl..----------C----------..Cl..
..
.. Cl..
The picture shows that each chlorine has six electrons in its outer shell and then a pair of electron is shared with carbon forming a single covalent bond.
Similarly methane CH4 can also be shown.
The hydrogen has one electron and it shares an electron from carbon stabilising itself forming methane.
Answer:
412 g Cl₂
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 3.50 × 10²⁴ molecules Cl₂
[Solve] grams Cl₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
[PT] Molar Mass of Cl - 35.45 g/mol
Molar Mass of Cl₂ - 2(35.45) = 70.9 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide/Multiply [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
412.072 g Cl₂ ≈ 412 g Cl₂
Answer: 15.3 grams C
Explanation: 1 mole is 6.02x10^23 atoms. We can find the moles of C in 7.675 x 10^23 atoms of C by dividing:
(7.675 x 10^23 atoms C)/(6.02x10^23 atoms C/mole) = 1.275 moles C
The molar mass of carbon is 12g/mole. So the mass of 7.675 x 10^23 atoms is (1.275 moles C)*(12 g/mole C) = 15.3 grams.