Answer:
Equal to change in momentum of larger mass.
Explanation:
We are given that
Two difference masses .
Force act on both masses for the same length of time.
We have to find the change in momentum of the smaller mass.
Let M and m are two masses
M>m
We know that
Change in momentum for large mass=
Change in momentum for small mass=
Because Force and length of time are same for both masses .
Hence, the change in momentum of smaller mass is equal to change in momentum of larger mass.
Answer:
C) 64lb
Explanation:
use the linearity method to find the weight of nadir on another planet, it is applied as follows.
Nadir Weight in earth ⇒ Nadir weight in another planet
Vince Weigh in eart ⇒ X
our goal is to find the weight of vince in another planet (X), for this we multiply the diagonal that continents the data and divide among the remaining
140pounds ⇒ 56lb
160pounds ⇒ X
X=
Vince weigh on the other planet is C) 64lb
Answer: B to C
Explanation: The line is curving inwards, practically calculating the stance that it had went down. If it went straight across, it stayed the same till a specific point, furthermore calculating the bent line bending upwards is actually a partial-raise, conclude points B to C is most likely an un-even balance, meaning it had went down; or decreasing. B to C is the decreasing segment of this equation/problem (question).
Answer:
u = - 38.85 m/s^-1
Explanation:
given data:
acceleration = 2.10*10^4 m/s^2
time = 1.85*10^{-3} s
final velocity = 0 m/s
from equation of motion we have following relation
v = u +at
0 = u + 2.10*10^4 *1.85*10^{-3}
0 = u + (21 *1.85)
0 = u + 38.85
u = - 38.85 m/s^-1
negative sign indicate that the ball bounce in opposite directon
A: Human Body
C is wrong because they don’t have the tools to test it on another planet