1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lakkis [162]
3 years ago
6

A circuit consists of a series combination of 6.50 −kΩ and 4.50 −kΩ resistors connected across a 50.0-V battery having negligibl

e internal resistance. You want to measure the true potential difference (that is, the potential difference without the meter present) across the 4.50 −kΩ resistor using a voltmeter having an internal resistance of 10.0 kΩ.
Part A: What potential difference does the voltmeter measure across the 4.50 kohm resistor?

PartB:What is the true potential difference across the resistor when the meter is not present?

Part C: By what percentage is the voltmeter reading in error from the true potential difference?
Physics
2 answers:
monitta3 years ago
8 0

Answer:

Part A with the effect of voltmeter = 16.15 V

Part B without the effect of voltmeter = 20.43 V

Part C Error = 20.94 %

Explanation:

Part A: What potential difference does the voltmeter measure across the 4.50kΩ  ohm resistor?

Since voltmeter has its own internal resistance, when it measures voltage across an element then that voltage is not true voltage across the element since the effect of voltmeter is also included. The internal resistance of the voltmeter becomes parallel to the resistance of element

Req = Rvm*R/Rvm+R

Where Rvm is the resistance of voltmeter and R is the resistance of the element R = 4.50 kΩ

Req = 4.50*10/4.50+10

Req = 3.103 kΩ

Now we calculate the current flowing in the circuit since it is series circuit, the current is same through all elements

I = V/Rtotal

Where Rtotal = 6.50 + 3.103 = 9.603 kΩ

I = 50/9.603

I = 5.206 mA

V = I*Req

V = 5.206*3.103

V = 16.15 V

Part B: What is the true potential difference across the resistor when the meter is not present?

Now we don't want to include the effect of internal resistance of the voltmeter so

I = V/Rtotal

Now Rtotal = 6.50 + 4.50 = 11 kΩ

I = 50/11

I = 4.54 mA

V = I*R

V = 4.54*4.50

V = 20.43 V

Hence, as you can see the true voltage across the resistor is 20.43 V so internal resistance of the voltmeter shows reduced voltage across the resistor that was 16.15 V

Part C: By what percentage is the voltmeter reading in error from the true potential difference?

Percentage error = (20.43 - 16.15/16.15)*100 %

Percentage error = 20.94 %

Vlada [557]3 years ago
4 0

Answer:

Part A: 16.1 V

Part B: 20.5 V

Part C: 21.5%

Explanation:

The voltmeter is in parallel with the 4.5-kΩ resistor and the combination is in series with the 6.5-kΩ resistor. The equivalent resistance of the parallel combination is given as

\dfrac{1}{R_E}=\dfrac{1}{4.50}+\dfrac{1}{10.0}

R_E=\dfrac{4.50\times10.0}{4.50+10.0} = 3.10

Part A

The voltmeter reading is the potential difference across the parallel combination. This is found by using the voltage-divider rule.

V_1 = \dfrac{3.10}{3.10+6.50}\times50.0 = \dfrac{3.10}{9.60}\times50.0 = 16.1 \text{ V}

Part B

Without the voltmeter, the potential difference across the 4.5-kΩ resistor is found using the same rule as above:

V_2 = \dfrac{4.50}{4.50+6.50}\times50.0 = \dfrac{4.50}{11.0}\times50.0 = 20.5 \text{ V}

Part C

The error in % is given by

\dfrac{20.5-16.1}{20.5}\times100\% = \dfrac{4.4}{20.5}\times100\% = 21.5\%

You might be interested in
Two point charges 3q and −8q (with q > 0) are at x = 0 and x = L, respectively, and free to move. A third charge is placed so
riadik2000 [5.3K]

Answer:

Explanation:

The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.

So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.

force on it due to rest of the charges will be equal and opposite so

k3q Q / x² =k 8q Q / (L+x)²

8x² = 3 (L+x)²

2√2 x = √3 (L+x)

2√2 x - √3 x = √3 L

x(2√2 - √3 ) = √3 L

x = √3 L / (2√2 - √3 )

Let us consider the balancing force on 3q

force on it due to -Q and -8q will be equal

kQ . 3q / x² = k3q  8q / L²

Q = 8q  (x² / L²)

so charge required = - 8q  (x² / L²)

and its distance from x on negative x side = √3 L / (2√2 - √3 )

3 0
3 years ago
HELP PLS MARKING BRANLIST 100 pts TAKING TEST RN
AlladinOne [14]

Answer:

15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2

Explanation:

8 0
3 years ago
a projectile is launched at an angle of 30 degrees and lands later at the same level. if it's initial speed is 50 m/s, solve for
Mrrafil [7]
using \: the \: formula \\ t = \frac{2u \sin( \alpha ) }{g} where \: u = initial \: speed \: \\ \alpha = angle \: of \: projection \\ g = acceleration \: due \: to \: gravity \\ \frac{2 \times 50 \times \sin(30) }{10} \\ \frac{100 \times 0.5}{10} = \frac{50}{10} = 5seconds

Maximum height
= (Usinα)^2/2g
(50*0.5)^2/20
25^2/20
625/20
=31.25metres
horizontal distance = Range= [U^2 * sin2α]/g
[50^2 * sin60]/10
2500 * 0.8660/10
2165/10=216.5metres
3 0
2 years ago
A car traveling at 26 m/s starts to decelerate steadily. It comes to a complete stop in 13 seconds. What is its acceleration?
Alenkasestr [34]

accn = - 26m/s divided by 13 secs

accn = 2m/s/s

8 0
3 years ago
Which players are usually the tallest on their team, and stay close to the basket so they can shoot and rebound the ball?
alexdok [17]

Answer:

Center

Explanation:

The center is the tallest player on each team, playing near the basket. On offense, the center tries to score on close shots and rebound. But on defense, the center tries to block opponents' shots and rebound their misses.

7 0
3 years ago
Other questions:
  • Than a cool
    6·1 answer
  • A partially evacuated airtight container has a tight-fitting lid of surface area 79.9 cm2 and negligible mass. If the force requ
    15·1 answer
  • The circumference of a sphere was measured to be
    13·1 answer
  • A _____ is used in a motor to switch the direction of the magnetic field created by the current.
    10·1 answer
  • An electroscope is a simple device consisting of a metal ball that is attached by a conductor to two thin leaves of metal foil p
    9·1 answer
  • The driver of a car traveling at 22.8 m/s applies the brakes and undergoes a constant deceleration of 2.95 m/s 2 . How many revo
    5·1 answer
  • A block is pulled across a table by a constant force of 9.20 N. If the mass of the block is 2.30kg, how fast will the block be m
    10·1 answer
  • Consider the reaction below Na2CO3 (aq) + CaCl2 (aq) CaCO3 (s) + 2NaCl (aq) If the releases 39.4 kJ of energy, how many kilocalo
    5·1 answer
  • PLEASE HELP!!!
    10·1 answer
  • Compared to the wavelength of incident light, diffuse reflection occurs when the size of surface irregularities is?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!