Answer:
Capacitance of the second capacitor = 2C
Explanation:

Where A is the area, d is the gap between plates and ε₀ is the dielectric constant.
Let C₁ be the capacitance of first capacitor with area A₁ and gap between plates d₁.
We have

Similarly for capacitor 2

Capacitance of the second capacitor = 2C
Explanation:
They will repel, meaning that they are made of an electrical conductor.
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
Mechanical advantage of a machine is the ratio of the output force over the input force or M=Fo/Fi. Since M=1, Fi=Fo, or the input force is equal to the output force. This means that to raise the refrigerator that weighs 900 N, we need the same input force of 900 N, or Fo=Fi=900 N.