Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s
Answer:
if i do give me brainliest ok ok
Explanation:
Answer:
the correct answer is D
Explanation:
In this exercise, the vectors are in the same west-east direction, so we can assume that the positive direction is east and perform the algebraic sum.
R = δ + ε
where
δ = 2.0 m
ε = 7.0 m
the positive sign indicates that it is heading east
R = 2.0 + 7.0
R = 9.0 m
the direction is east
the correct answer is D
The answer to this question is b
Answer:
b. 0.25cm
Explanation:
You can solve this question by using the formula for the position of the fringes:

m: order of the fringes
lambda: wavelength 500nm
D: distance to the screen 5 m
d: separation of the slits 1mm=1*10^{-3}m
With the formula you can calculate the separation of two adjacent slits:

hence, the aswer is 0.25cm