Answer:
have a component along the direction of motion that remains perpendicular to the direction of motion
Explanation:
In this exercise you are asked to enter which sentence is correct, let's start by writing Newton's second law.
circular movement
F = m a
a = v² / r
F = m v²/R
where the force is perpendicular to the velocity, all the force is used to change the direction of the velocity
in linear motion
F = m a
where the force is parallel to the acceleration of the body, the total force is used to change the modulus of the velocity
the correct answer is: have a component along the direction of motion that remains perpendicular to the direction of motion
Answer:
Explanation:
To calculate the time it took the car to hit the ground, we use the formula
speed = distance/time
80 m/s = 300 m/time
time = 300/80
time = 3.75 secs
It must have taken the car 3.75 seconds to hit the ground
To determine the horizontal distance of the car before hitting the ground, the same formula will also be used but with the time obtained above (since that was the time it took before hitting the ground)
speed = distance/time
80 = distance/3.75
distance = 3.75 x 80
distance = 300 meters
It will take 6.42 s for the ball that is dropped from a height of 206 m to reach the ground.
From the question given above, the following data were obtained:
Height (H) = 206 m
<h3>Time (t) =? </h3>
NOTE: Acceleration due to gravity (g) = 10 m/s²
The time taken for the ball to get to the ground can be obtained as follow:
H = ½gt²
206 = ½ × 10 × t²
206 = 5 × t²
Divide both side by 5

Take the square root of both side

<h3>t = 6.42 s</h3>
Therefore, it will take 6.42 s for the ball to get to the ground.
Learn more: brainly.com/question/24903556