From the average speed you can fix an equation:
Average speed = distance / time
You know the average speed = 65.1 kg / h, then
65.1 = distance / total time,
where total time is the time traveling plus 22.0 minutes
Call t the time treavelling and pass 22 minutes to hours:
65.1 = distance / [t + 22/60] ==> distance = [t + 22/60]*65.1
From the constant speed, you can fix a second equation
Constant speed = distance / time traveling
94.5 = distance / t ==> distance = 94.5 * t
The distance is the same in both equations, then you have:
[t +22/60] * 65.1 = 94.5 t
Now you can solve for t.
65.1t + 22*65.1/60 = 94.5t
94.5t - 65.1t = 22*65.1/60
29.4t = 23.87
t = 23.87 / 29.4
t = 0.812 hours
distance = 94.5 km/h * 0.812 h = 76.7 km
Answers: 1) 0.81 hours, 2) 76.7 km
12. The answer would be C. 1.50 s. This is because if you divide 60 by 40, you will get 1.5.
13. For this one I'm not sure, but what I can tell you is that the heavier something is the faster it will sink, the lighter it is, it will float.
Based on the length of the Ethernet cable and the mass, the tension in the cable can be found to be 80 N.
<h3>How much tension is in the cable?</h3>
The tension in the cable can be found as:
= 4 x mass x length x frequency
Solving for the frequency is:
= 1 / (0.800 / 4)
= 1 / 0.20
= 5.0 Hz
The tension is therefore:
= 4 x 0.20 x 4.00 x 5
= 80N
Find out more on tension at brainly.com/question/14336853
#SPJ4