To solve this problem it is necessary to apply the kinematic equations of motion.
By definition we know that the position of a body is given by

Where
Initial position
Initial velocity
a = Acceleration
t= time
And the velocity can be expressed as,

Where,

For our case we have that there is neither initial position nor initial velocity, then

With our values we have
, rearranging to find a,



Therefore the final velocity would be



Therefore the final velocity is 81.14m/s
The best and most correct answer among the choices provided by your question is the second choice or letter B.
<span>A satellite (s) is moving in an elliptical orbit around the earth has its angular momentum towards the earth changing in direction, but not in magnitude.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
the period of the 16 m pendulum is twice the period of the 4 m pendulum
Explanation:
Recall that the period (T) of a pendulum of length (L) is defined as:

where "g" is the local acceleration of gravity.
SInce both pendulums are at the same place, "g" is the same for both, and when we compare the two periods, we get:

therefore the period of the 16 m pendulum is twice the period of the 4 m pendulum.
Answer:
yes !!
Explanation:
Magnets can be found in the simplest or most complex devices you use every day. From home appliances such as the refrigerator, microwave oven and electric fan, to your company's office equipment such as computers and printers. All these devices use magnets.
Solar cells can be classified into first, second and third generation cells. The first generation cells—also called conventional, traditional or wafer-based cells—are made of crystalline silicon, the commercially predominant PV technology, that includes materials such as polysilicon and monocrystalline silicon.