To solve this problem it is necessary to apply the concepts related to Young's Module, and find the radius that gives the ratio between the two given materials. Young's module can be defined as,

Where,
F= Force
L = Initial Length
A = Cross-sectional Area
Change in Length
Re-arrange the equation to find the change in Length we have,

If both the Force, as the Area and the initial length are considered constant, we can realize directly that the change in length is inversely proportional to Young's Module, therefore

Applying this concept to that of the two materials (Brass and Tungsten),



If the force caused
to be stretched, the tungsten will stretch 0.25 of that ratio


Therefore the amount of stretch of Tungsten is 7.5*10^{-7}m
The simplest answer is that gravity is the field created by a mass distribution in the spacetime around it; gravitational force is the force exterted by the field on a test mass in the field.
Explanation:
Given that,
Radius of circular path, r = 5 m
Centripetal acceleration, 
(a) Let v is the astronaut’s speed. The formula for the centripetal acceleration is given by :



v = 18.5 m/s
(b) Let T denotes the time period. It is given by :


T = 1.69 s
Let N is the number of revolutions. So,

So, the number of revolutions per minute is 35.5
(c) T = 1.69 seconds
Hence, this is the required solution.
Answer:
True.
Explanation:
A diode, which allows current to flow in one direction only, consists of two types of semiconductors joined together.
A semiconductor can be defined as a crystalline solid substance that has its conductivity lying between that of a metal and an insulator, due to the effects of temperature or an addition of an impurity. Semiconductors are classified into two main categories;
1. Extrinsic semiconductor.
2. Intrinsic semiconductor.
An intrinsic semiconductor is a crystalline solid substance that is in its purest form and having no impurities added to it. Examples of intrinsic semiconductor are Germanium and Silicon.
In an intrinsic semiconductor, the number of free electrons is equal to the number of holes. Also, in an intrinsic semiconductor the number of holes and free electrons is directly proportional to the temperature; as the temperature increases, the number of holes and free electrons increases and vice-versa.
In an intrinsic semiconductor, each free electrons (valence electrons) produces a covalent bond.
Answer:
Inductance as calculated is 13.12 mH
Solution:
As per the question:
Length of the coil, l = 12 cm = 0.12 m
Diameter, d = 1.7 cm = 0.017 m
No. of turns, N = 235
Now,
Area of cross-section of the wire, A = 
We know that the inductance of the coil is given by the formula:
