Consecutive integers mean one after the other and their difference would one more or less.
Let the numbers be x, x +1, x +2.
Therefore x + (x+1) + (x +2) = 567
3x + 3 = 567
3x = 567 -3 = 564
3x = 564 Divide by 3.
x = 564/3
x = 188
Therefore integers x, x +1, x +2 = 188, 188+1, 188+2.
= 188, 189, 190.
Cheers.
Answer: True
Step-by-step explanation:
AB is congruent to RS
BC is congruent to ST
CD is congruent to TV
So DC would be congruent to VT
Answer:
(e) csc x − cot x − ln(1 + cos x) + C
(c) 0
Step-by-step explanation:
(e) ∫ (1 + sin x) / (1 + cos x) dx
Split the integral.
∫ 1 / (1 + cos x) dx + ∫ sin x / (1 + cos x) dx
Multiply top and bottom of first integral by the conjugate, 1 − cos x.
∫ (1 − cos x) / (1 − cos²x) dx + ∫ sin x / (1 + cos x) dx
Pythagorean identity.
∫ (1 − cos x) / (sin²x) dx + ∫ sin x / (1 + cos x) dx
Divide.
∫ (csc²x − cot x csc x) dx + ∫ sin x / (1 + cos x) dx
Integrate.
csc x − cot x − ln(1 + cos x) + C
(c) ∫₋₇⁷ erf(x) dx
= ∫₋₇⁰ erf(x) dx + ∫₀⁷ erf(x) dx
The error function is odd (erf(-x) = -erf(x)), so:
= -∫₀⁷ erf(x) dx + ∫₀⁷ erf(x) dx
= 0
Answer:
AQ = 20 units
Step-by-step explanation:
Comparing triangle AQR to ABC,
= 
= 
cross multiply and make p the subject of formula, we have:
8p (2p+3) = 4p(6p-4)
16
+ 24p = 24
- 16p
24p + 16p = 24
- 16
40p = 8
divide through by 8p,
p = 5
Therefore, AQ = 4p
= 4 × 5
= 20
AQ = 20 units