1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
15

For which of the following equilibria does `"K"_("eq") = ["O"_2]`? A. O2(l) O2(g) B. 2O3(g) 3O2(g) C. 2H2O(l) 2H2(g) + O2(g) D.

2Hg(s) +O2(g) 2HgO(s)
Chemistry
2 answers:
Feliz [49]3 years ago
8 0

For plato users

the answer is a. O2(l) O2(g)

hope this helps!

svp [43]3 years ago
3 0

For a hypothetical reaction:

aA ↔ bB

the equilibrium constant is given as:

Keq = [B]^b/[A]^a

activity of pure solids and liquids = 1

For the given reactions:

A) O2(l) ↔ O2(g)

Keq = [O₂]

B) 2O3(g) ↔ 3O2(g)

Keq = [O₂]³/[O₃]²

C) 2H2O(l) ↔2H2(g) + O2(g)

Keq = [H₂]²[O₂]

D) 2Hg(s) + O2(g) ↔ 2HgO(s)

Keq = [Hg]²[O₂]

Ans: A



You might be interested in
Explain how rain gauge measures the amount of rainfall​
andre [41]

A rain gauge is really just a cylinder that catches rain. If an inch collects in the cylinder, it means an inch of rain has fallen. It's that simple. Most standard rain gauges have a wide funnel leading into the cylinder and are calibrated so that one-tenth of an inch of rain measures one inch when it collects inside.

3 0
3 years ago
50.0g of N2O4 is introduced into an evacuated 2.00L vessel and allowed to come to equilibrium with its decomposition product,N2O
Lady_Fox [76]

The mass of N2O4 in the final equilibrium mixture is 39.45 grams.

The decomposition reaction of N2O4 to 2NO2 can be expressed as:

\mathbf{N_2O_4{(g)} \leftrightarrow 2NO_{2(g)}}

From the parameters given:

  • The mass of N2O4 = 50.0 g
  • The molar mass of N2O4 = 92.011 g/mol

The number of mole of N2O4 can be determined as:

\mathbf{Moles \ of \ N_2O_4 = \dfrac{50.0 g}{92.011 g/mol}}

\mathbf{Moles \ of \ N_2O_4 = 0.5434 \ moles}

  • The volume of the vessel in which N2O4 was evacuated is = 2.0 L

From stochiometry, the concentration of \mathbf{[N2O4] = \dfrac{mole \  of \ N_2O_4}{volume \  of \ N_2O_4}}

\mathbf{[N2O4] = \dfrac{0.5434}{2}}

\mathbf{[N2O4] = 0.2717 \ M}

The I.C.E table can be computed as:

                            \mathbf{N_2O_4{(g)}}           ↔            \mathbf{ 2NO_{2(g)}}

Initial                    0.2717                              0

Change                 -x                                     +2x

Equilibrium           (0.2717 - x)                        2x

The equilibrium constant from the I.C.E table can be expressed as:

\mathbf{K_c = \dfrac{[NO]^2}{[N_2O_4]}}

\mathbf{K_c = \dfrac{(2x)^2}{(0.2717-x)}}

  • Recall that; Kc = 0.133

∴

\mathbf{0.133 = \dfrac{4x^2}{(0.2717-x)}}

0.0361 - 0.133x = 4x²

4x²  + 0.133x - 0.0361 = 0

By solving the above quadratic equation, we have;

x = 0.07978

The Concentration of [NO2] = 2x

  • [NO2] = 2 (0.07978)
  • [NO2] = 0.15956 M

The Concentration of [N2O4] = 0.2717 - x

  • [N2O4] = 0.2717 - 0.07978
  • [NO2] = 0.19192 M

Again, from the decomposition reaction, we can assert that;

  • \mathbf{N_2O_4{(g)} \leftrightarrow 2NO_{2(g)}}

0.19192 M of N2O4 decompose to produce 0.15956 M of NO2.

However, if 5.0 g of NO2 is injected into the vessel, then the number of moles of NO2 injected becomes;

\mathbf{= \dfrac{5.0 \ g}{46 \ g/mol}} \\ \\ \\   \mathbf{= 0.10869\  moles}

The Molarity of NO2 injected now becomes:

\mathbf{= \dfrac{00.10869 }{2} } \\ \\ \\ \mathbf{= 0.05434 \ M }

So, the new moles of [NO2] becomes = 0.15956 + 0.05434

= 0.2139 M

The new I.C.E table can be computed as:

                            \mathbf{N_2O_4{(g)}}           ↔            \mathbf{ 2NO_{2(g)}}

Initial                    0.19192                             0.2139 M

Change                 +x                                     -2x

Equilibrium           (0.19192 + x)                       (0.2139 -2x)

NOTE: The injection of NO2 makes the reaction proceed in the backward direction.

The equilibrium constant from the I.C.E table can be expressed as:

\mathbf{K_c = \dfrac{[NO]^2}{[N_2O_4]}}

\mathbf{K_c = \dfrac{(0.2139 - 2x)^2}{(0.19192+x)}}

  • Recall that; Kc = 0.133

\mathbf{0.133= \dfrac{(0.2139 - 2x)^2}{(0.19192+x)}}

By solving for x;

x = 0.2246 or x = 0.0225

We need to consider the value of x that is less than the initial concentration of NO2(0.2139 M) which is:

x = 0.0225

Now, the final concentration of [N2O4] = (0.19192 + 0.0225)M

= 0.21442 M

The final number of moles of N2O4 = Molarity(concentration) × volume

The final number of moles of N2O4 = (0.21442 × 2) moles

The final number of moles of N2O4 = 0.42884 moles

The mass of N2O4 in the final equilibrium mixture is:

= final number of moles × molar mass of N2O4

= 0.42884 moles × 92 g/mol

= 39.45 grams

Learn more about the decomposition of N2O4 here:

brainly.com/question/25025725

6 0
3 years ago
Which particles that make up an atom are involved in nuclear reactions ?
saveliy_v [14]

Answer: (B) proton And neutrons

Explanation:

8 0
3 years ago
Read 2 more answers
Hydrogen gas (a potential future fuel) can be formed by the reaction of methane with water according to the following equation:
dem82 [27]

Answer:

The percent yield of the reaction is 62.05 %

Explanation:

Step 1: Data given

Volume of methane = 25.5 L

Pressure of methane = 732 torr

Temperature = 25.0 °C = 298 K

Volume of water vapor = 22.0 L

Pressure of H2O = 704 torr

Temperature = 125 °C

The reaction produces 26.0 L of hydrogen gas measured at STP

Step 2: The balanced equation

CH4(g) + H2O(g) → CO(g) + 3H2(g)

Step 3: Calculate moles methane

p*V = n*R*T

⇒with p = the pressure of methane = 0.963158 atm

⇒with V = the volume of methane = 25.5 L

⇒with n = the moles of methane = TO BE DETERMINED

⇒with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 298 K

n = (p*V) / (R*T)

n = (0.963158 * 25.5 ) / ( 0.08206 * 298)

n = 1.0044 moles

Step 4: Calculate moles H2O

p*V = n*R*T

⇒with p = the pressure of methane = 0.926316 atm

⇒with V = the volume of methane = 22.0 L

⇒with n = the moles of methane = TO BE DETERMINED

⇒with R = the gas constant = 0.08206 L*atm/mol*K

⇒with T = the temperature = 398 K

n = (p*V) / (R*T)

n = (0.926316 * 22.0) / (0.08206 * 398)

n = 0.624 moles

Step 5: Calculate the limiting reactant

For 1 mol methane we need 1 mol H2O to produce 1 mol CO and 3 moles H2

H2O is the limiting reactant. It will completely be consumed (0.624 moles).

Methane is in excess. There will react 0.624 moles. There will remain 1.0044 - 0.624 moles = 0.3804 moles methane

Step 6: Calculate moles hydrogen gas

For 1 mol methane we need 1 mol H2O to produce 1 mol CO and 3 moles H2

For 0.624 moles H2O we'll have 3*0.624 = 1.872 moles

Step 9: Calculate volume of H2 at STP

1.0 mol at STP has a volume of 22.4 L

1.872 moles has a volume of 1.872 * 22.4 = 41.9 L

Step 10: Calculate the percent yield of the reaction

% yield = (actual yield / theoretical yield) * 100 %

% yield = ( 26.0 L / 41.9 L) *100 %

% yield = 62.05 %

The percent yield of the reaction is 62.05 %

6 0
3 years ago
Read 2 more answers
Which of these is a characteristic of science?
Gnoma [55]

Answer:

What are the characteristics of science? Objectivity: Scientific knowledge is objective. Verifiability: Science rests upon sense data, i.e., data gathered through our senses—eye, ear, nose, tongue and touch. Ethical Neutrality: Science is ethically neutral. Systematic Exploration.

Explanation:

there are no options but I search and this is what I got.

can I have brainliest

6 0
3 years ago
Other questions:
  • Which form of energy is non-renewable?<br> A. sunlight<br> B. fossil fuels<br> C. water<br> D. wind
    10·2 answers
  • Use the periodic to write the electron configuration for barium noble gas notation
    11·2 answers
  • Which of the following is a type of kinetic energy.
    12·1 answer
  • What type of state is glass? please explain about it.
    9·2 answers
  • Why Aluminium Oxide has higher melting point than Alumunium Chloride? Try to mentioned about ionic compound.
    14·1 answer
  • What % of baking soda is hydrogen
    12·1 answer
  • Elements may be individual atoms or they may form molecules. Compounds can only have which form? PLEASE ANSWER FAST WILL GIVE BR
    9·2 answers
  • Ionic compounds form because ___ charges attract
    12·1 answer
  • The Princess cruise ship left San Francisco and traveled south for 8 hours at a speed of 30mph. What is the velocity of the ship
    13·1 answer
  • Which of these actions would increase heat transfer between two objects?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!