I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer:
The molarity of the solution is 1,03 M.
Explanation:
Molarity is a concentration measure that expresses the moles of solute (in this case HBR) in 1 liter of solution (1000ml). First we calculate the mass of 1 mol of HBr, to calculate the moles that are in 50 g of said compound:
Weight 1 mol HBr= Weight H + Weight Br= 1,01g + 79,90g= 80, 91 g/mol
80,91 g ----1 mol HBr
50,0 g------x= (50,0 g x1 mol HBr)/80,91 g= 0,62 mol HBr
600 ml solution-----0,62 mol HBr
1000ml solution------x= (1000ml solution x 0,62 mol HBr)/600 ml solution
<em>x=1,03 moles HBr ---> The solution is 1,03M</em>
Answer:
it's law
Explanation:
i got it wrong because i put the wrong answer but it was law or c
i hope this help's
This is based on your personal opinion lol but ig you can say public speaking