SI unit of length - meters
Answer:
ΔH = - 5315 kJ.
Explanation:
The given chemical reaction is as follows -
2C₄H₁₀ (g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g) + 5315 kJ
In the above equation , the amount of energy i.e. 5315 kJ is released , i.e. it is in the product side , hence , the reaction is an example of an exothermic reaction .
Hence ,
The value of the change in enthalphy , i.e. , the enthalpy of product minus the enthalpy of the product .
Therefore ,
The value of the change in enthalphy = - ve .
Hence ,
ΔH = - 5315 kJ.
Answer:
The surface-to-volume ratio of a C-60 fullerene is 3:77.
Explanation:
Surface area of sphere = 
Volume of the sphere = 
where : r = radius of the sphere
Radius of the C-60 fullerene sphere = r = 77 pm
Surface area of the C-60 fullerene =
...[1]
Volume area of the C-60 fullerene =
..[2]
Dividing [1] by [2]:


The surface-to-volume ratio of a C-60 fullerene is 3:77.
<span>The correct formula for Beryllium phosphate is Be3(PO4)2
Beryllium has a charge of +2 and phosphate has a charge of -3. So to make the charge equal to zero, 3x +2 = 6, and 2 x-3 = -6
-6 + +6 = 0</span>
Answer:

Explanation:
To solve this problem, we can use the Combined Gas Laws:

Data:
p₁ = 1.7 kPa; V₁ = 7.5 m³; T₁ = -10 °C
p₂ = ?; V₂ = 3.8 m³; T₂ = 200 K
Calculations:
(a) Convert temperature to kelvins
T₁ = (-10 + 273.15) K = 263.15 K
(b) Calculate the pressure
