Answer:
the attractive forces keep the particles together tightly enough so that the particles do not move past each other.
Explanation:
In the solid the particles vibrate in place.
The red semicircle shown in the weather chart represents warm front.
Use the Ideal Gas Law to find the moles of gas first.
Be sure to convert T from Celsius to Kelvin by adding 273.
Also I prefer to deal with pressure in atm rather than mmHg, so divide the pressure by 760 to get it in atm.
PV = nRT —> n = PV/RT
P = 547 mmHg = 547/760 atm = 0.720 atm
V = 1.90 L
T = 33°C = 33 + 273 K = 306 K
R = 0.08206 L atm / mol K
n = (0.720 atm)(1.90 L) / (0.08206 L atm / mol K)(306 K) = 0.0545 mol of gas
Now divide grams by mol to get the molecular weight.
3.42 g / 0.0545 mol = 62.8 g/mol
I dont know but i just went on here to look up my answers but it 2