The magnetic dipole moment of the current loop is 0.025 Am².
The magnetic torque on the loop is 2.5 x 10⁻⁴ Nm.
<h3>What is magnetic dipole moment?</h3>
The magnetic dipole moment of an object, is the measure of the object's tendency to align with a magnetic field.
Mathematically, magnetic dipole moment is given as;
μ = NIA
where;
- N is number of turns of the loop
- A is the area of the loop
- I is the current flowing in the loop
μ = (1) x (25 A) x (0.001 m²)
μ = 0.025 Am²
The magnetic torque on the loop is calculated as follows;
τ = μB
where;
- B is magnetic field strength
B = √(0.002² + 0.006² + 0.008²)
B = 0.01 T
τ = μB
τ = 0.025 Am² x 0.01 T
τ = 2.5 x 10⁻⁴ Nm
Thus, the magnetic dipole moment of the current loop is determined from the current and area of the loop while the magnetic torque on the loop is determined from the magnetic dipole moment.
Learn more about magnetic dipole moment here: brainly.com/question/13068184
#SPJ1
Answer:
Work done will be 2.205 j
Explanation:
We have given that the spring is compressed b 37.5 cm
So d = 0.375 m
Mass of the block m = 600 gram = 0.6 kg
Acceleration due to gravity 
Gravitational force on the block 
Now we know that work done is give by 
[two waves] pass a point [every second]... The answer is in the question (B)