I believe the answer is the second one.
Explanation:
For a circular orbit v=
with G = 6.6742 × 
Given m = 6.42 x 10^23 kg and r=9.38 x 10^6 m
=> v = 2137.3 m/s
I hope this is the correct way to solve
Answer:
796.18 Hz
Explanation:
Applying,
Maximum velocity = Amplitude×Angular velocity
Therefore,
V' = A(2πf)............... Equation 1
Where V' = maximum velocity of the eardrum, A = Amplitude of vibration of the eardrum, f = frequency of the eardrum vibration, π = pie
make f the subject of the equation
f = V'/2πA................ Equation 2
From the question,
Given: V' = 3.6×10⁻³ m/s, A' = 7.2×10⁻⁷ m,
Constant: 3.14.
Substitute these values into equation 2
f = 3.6×10⁻³/( 7.2×10⁻⁷×2×3.14)
f = 796.18 Hz
Answer:
The inductance of the inductor is 35.8 mH
Explanation:
Given that,
Voltage = 120-V
Frequency = 1000 Hz
Capacitor 
Current = 0.680 A
We need to calculate the inductance of the inductor
Using formula of current


Put the value of Z into the formula

Put the value into the formula


Hence, The inductance of the inductor is 35.8 mH
Answer:
<h3>The answer is 0.54 m</h3>
Explanation:
The wavelength of a wave can be found by using the formula

where
c is the velocity
f is the frequency
So we have

We have the final answer as
<h3>0.54 m</h3>
Hope this helps you