Answer:
Explanation:
The amine functional group is obtained by subsititution of one or more hydrogen atoms in the ammonia compound.
Ammonia is NH₃.
Then,
- by substituting one hydrogen you obtain R - NH₂.
- by substituting two hydrogens you obtain R' - NH - R''
- by subsituting the three hydrogens you obtain:
R'''
|
R' - N - R''
In this case, the three subsitutuents are silyl groups. The silyl group is derived form silane and is SiH₃. So, the tcompound <em>trisilylamine</em> is:
SiH₃
|
SiH₃ - N - SiH₃
Thus, you can count 3 hydrogen atoms for every silylgroup for a total of <u><em>9 hydrogen atoms in each molecule of trisilylamine.</em></u>
Answer:
The answer to your question is the letter B
Explanation:
I will draw the skeletal structures of these compounds to determine which alcohol is secondary.
Secondary alcohol is alcohol in which the hydroxyl group is attached to a secondary alcohol.
Letter A has primary and secondary alcohol so I discard this choice.
Letter B has secondary alcohol, so this is the correct choice.
The letter C has a primary and 2 secondary alcohols so I discard this choice.
(1,0)n +(235,92)U --->(91,36)Kr + (142,56) Ba + 3(1,0)n
The answer is: " NaCl + H₂O " ; (or; write as: " H₂O + NaCl " ) .
________________________________________________________
Specifically:
_________________________________________________________
HCl + NaOH —> NaCl + H₂O ; or; write as:
NaOH + HCl —> H₂O + NaCl .
_______________________________________________________
This type of "double-replacement" reaction is called "neutralization".
Since we are adding a strong acid to a strong base (reactants), we know that the product will be: 1) a salt ; and 2) water. Since we know one of the reactants will be "water" (H₂O) ; we can find the base (i.e. , the "remaining product") from selecting the "unused elements" to form the corresponding "salt".
________________________________________________________
First, let us define Electronegativity. Electronegativity is "the ability of an atom to attract electrons." In addition, electronegativity increases in elements from left to right, while on the other hand, electronegativity decreases from top to bottom in an element group. It decreases because the atomic radius increases as we go downward an element in the group.