Answer:
Q = 44.9 j
Explanation:
Mass of iron = 5.0 g
Change in temperature = 20 °C
Specific heat of iron = 0.449 j/g.°C
Heat transferred = ?
Formula:
<em>Q = m.c. ΔT
</em>
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Solution:
<em>Q = m.c. ΔT
</em>
Q = 5 g × 0.449 j/g.°C × 20 °C
Q = 44.9 j
Answer:
ethyl acetate layer
Explanation:
This question tests your knowledge of the principle of solvent extraction.
In solvent extraction, there is always an organic layer and an aqueous layer. The ethyl acetate is the organic layer while the sodium bicarbonate is the aqueous layer.
A brominated aromatic compound will be extracted into the organic layer (ethyl acetate layer).
Answer:
Ether is used as a solvent because it is aprotic and can solvate the magnesium ion.
Explanation:
Solubility in Water
Because ethers are polar, they are more soluble in water than alkanes of a similar molecular weight. The slight solubility of ethers in water results from hydrogen bonds between the hydrogen atoms of water molecules and the lone pair electrons of the oxygen atom of ether molecules.
Ethers as Solvents
Ethers such as diethyl ether dissolve a wide range of polar and nonpolar organic compounds. Nonpolar compounds are generally more soluble in diethyl ether than alcohols because ethers do not have a hydrogen bonding network that must be broken up to dissolve the solute. Because diethyl ether has a moderate dipole moment, polar substances dissolve readily in it.
Ethers are aprotic. Thus, basic substances, such as Grignard reagents, can be prepared in diethyl ether or tetrahydrofuran. These ethers solvate the magnesium ion, which is coordinated to the lone pair electrons of diethyl ether or THF. Figure attached, shows the solvation of a Grignard reagent with dietheyl ether.
The lone pair electrons of an ether also stabilize electron deficient species such as BF3 and borane (BH3). For example, the borane-THF complex is used in the hydroboration of alkenes (Section 1
Answer:
Ununoctium
Explanation:
It's at the very end of the periodic table